4536 lines
		
	
	
		
			161 KiB
		
	
	
	
		
			C
		
	
	
	
		
		
			
		
	
	
			4536 lines
		
	
	
		
			161 KiB
		
	
	
	
		
			C
		
	
	
	
|  | /*
 | ||
|  |   Formatting library for C++ | ||
|  | 
 | ||
|  |   Copyright (c) 2012 - present, Victor Zverovich | ||
|  | 
 | ||
|  |   Permission is hereby granted, free of charge, to any person obtaining | ||
|  |   a copy of this software and associated documentation files (the | ||
|  |   "Software"), to deal in the Software without restriction, including | ||
|  |   without limitation the rights to use, copy, modify, merge, publish, | ||
|  |   distribute, sublicense, and/or sell copies of the Software, and to | ||
|  |   permit persons to whom the Software is furnished to do so, subject to | ||
|  |   the following conditions: | ||
|  | 
 | ||
|  |   The above copyright notice and this permission notice shall be | ||
|  |   included in all copies or substantial portions of the Software. | ||
|  | 
 | ||
|  |   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
|  |   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
|  |   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
|  |   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | ||
|  |   LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | ||
|  |   OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | ||
|  |   WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
|  | 
 | ||
|  |   --- Optional exception to the license --- | ||
|  | 
 | ||
|  |   As an exception, if, as a result of your compiling your source code, portions | ||
|  |   of this Software are embedded into a machine-executable object form of such | ||
|  |   source code, you may redistribute such embedded portions in such object form | ||
|  |   without including the above copyright and permission notices. | ||
|  |  */ | ||
|  | 
 | ||
|  | #ifndef FMT_FORMAT_H_
 | ||
|  | #define FMT_FORMAT_H_
 | ||
|  | 
 | ||
|  | #include <cmath>             // std::signbit
 | ||
|  | #include <cstdint>           // uint32_t
 | ||
|  | #include <cstring>           // std::memcpy
 | ||
|  | #include <initializer_list>  // std::initializer_list
 | ||
|  | #include <limits>            // std::numeric_limits
 | ||
|  | #include <memory>            // std::uninitialized_copy
 | ||
|  | #include <stdexcept>         // std::runtime_error
 | ||
|  | #include <system_error>      // std::system_error
 | ||
|  | 
 | ||
|  | #ifdef __cpp_lib_bit_cast
 | ||
|  | #  include <bit>  // std::bit_cast
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include "core.h"
 | ||
|  | 
 | ||
|  | #if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
 | ||
|  | #  define FMT_INLINE_VARIABLE inline
 | ||
|  | #else
 | ||
|  | #  define FMT_INLINE_VARIABLE
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
 | ||
|  | #  define FMT_FALLTHROUGH [[fallthrough]]
 | ||
|  | #elif defined(__clang__)
 | ||
|  | #  define FMT_FALLTHROUGH [[clang::fallthrough]]
 | ||
|  | #elif FMT_GCC_VERSION >= 700 && \
 | ||
|  |     (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520) | ||
|  | #  define FMT_FALLTHROUGH [[gnu::fallthrough]]
 | ||
|  | #else
 | ||
|  | #  define FMT_FALLTHROUGH
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef FMT_DEPRECATED
 | ||
|  | #  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VERSION >= 1900
 | ||
|  | #    define FMT_DEPRECATED [[deprecated]]
 | ||
|  | #  else
 | ||
|  | #    if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
 | ||
|  | #      define FMT_DEPRECATED __attribute__((deprecated))
 | ||
|  | #    elif FMT_MSC_VERSION
 | ||
|  | #      define FMT_DEPRECATED __declspec(deprecated)
 | ||
|  | #    else
 | ||
|  | #      define FMT_DEPRECATED /* deprecated */
 | ||
|  | #    endif
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef FMT_NO_UNIQUE_ADDRESS
 | ||
|  | #  if FMT_CPLUSPLUS >= 202002L
 | ||
|  | #    if FMT_HAS_CPP_ATTRIBUTE(no_unique_address)
 | ||
|  | #      define FMT_NO_UNIQUE_ADDRESS [[no_unique_address]]
 | ||
|  | // VS2019 v16.10 and later except clang-cl (https://reviews.llvm.org/D110485)
 | ||
|  | #    elif (FMT_MSC_VERSION >= 1929) && !FMT_CLANG_VERSION
 | ||
|  | #      define FMT_NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
 | ||
|  | #    endif
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | #ifndef FMT_NO_UNIQUE_ADDRESS
 | ||
|  | #  define FMT_NO_UNIQUE_ADDRESS
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Visibility when compiled as a shared library/object.
 | ||
|  | #if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
 | ||
|  | #  define FMT_SO_VISIBILITY(value) FMT_VISIBILITY(value)
 | ||
|  | #else
 | ||
|  | #  define FMT_SO_VISIBILITY(value)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef __has_builtin
 | ||
|  | #  define FMT_HAS_BUILTIN(x) __has_builtin(x)
 | ||
|  | #else
 | ||
|  | #  define FMT_HAS_BUILTIN(x) 0
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if FMT_GCC_VERSION || FMT_CLANG_VERSION
 | ||
|  | #  define FMT_NOINLINE __attribute__((noinline))
 | ||
|  | #else
 | ||
|  | #  define FMT_NOINLINE
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef FMT_THROW
 | ||
|  | #  if FMT_EXCEPTIONS
 | ||
|  | #    if FMT_MSC_VERSION || defined(__NVCC__)
 | ||
|  | FMT_BEGIN_NAMESPACE | ||
|  | namespace detail { | ||
|  | template <typename Exception> inline void do_throw(const Exception& x) { | ||
|  |   // Silence unreachable code warnings in MSVC and NVCC because these
 | ||
|  |   // are nearly impossible to fix in a generic code.
 | ||
|  |   volatile bool b = true; | ||
|  |   if (b) throw x; | ||
|  | } | ||
|  | }  // namespace detail
 | ||
|  | FMT_END_NAMESPACE | ||
|  | #      define FMT_THROW(x) detail::do_throw(x)
 | ||
|  | #    else
 | ||
|  | #      define FMT_THROW(x) throw x
 | ||
|  | #    endif
 | ||
|  | #  else
 | ||
|  | #    define FMT_THROW(x) \
 | ||
|  |       ::fmt::detail::assert_fail(__FILE__, __LINE__, (x).what()) | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if FMT_EXCEPTIONS
 | ||
|  | #  define FMT_TRY try
 | ||
|  | #  define FMT_CATCH(x) catch (x)
 | ||
|  | #else
 | ||
|  | #  define FMT_TRY if (true)
 | ||
|  | #  define FMT_CATCH(x) if (false)
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef FMT_MAYBE_UNUSED
 | ||
|  | #  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
 | ||
|  | #    define FMT_MAYBE_UNUSED [[maybe_unused]]
 | ||
|  | #  else
 | ||
|  | #    define FMT_MAYBE_UNUSED
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef FMT_USE_USER_DEFINED_LITERALS
 | ||
|  | // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
 | ||
|  | //
 | ||
|  | // GCC before 4.9 requires a space in `operator"" _a` which is invalid in later
 | ||
|  | // compiler versions.
 | ||
|  | #  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 409 || \
 | ||
|  |        FMT_MSC_VERSION >= 1900) &&                                     \ | ||
|  |       (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) | ||
|  | #    define FMT_USE_USER_DEFINED_LITERALS 1
 | ||
|  | #  else
 | ||
|  | #    define FMT_USE_USER_DEFINED_LITERALS 0
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
 | ||
|  | // integer formatter template instantiations to just one by only using the
 | ||
|  | // largest integer type. This results in a reduction in binary size but will
 | ||
|  | // cause a decrease in integer formatting performance.
 | ||
|  | #if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
 | ||
|  | #  define FMT_REDUCE_INT_INSTANTIATIONS 0
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // __builtin_clz is broken in clang with Microsoft CodeGen:
 | ||
|  | // https://github.com/fmtlib/fmt/issues/519.
 | ||
|  | #if !FMT_MSC_VERSION
 | ||
|  | #  if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
 | ||
|  | #    define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
 | ||
|  | #  endif
 | ||
|  | #  if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
 | ||
|  | #    define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // __builtin_ctz is broken in Intel Compiler Classic on Windows:
 | ||
|  | // https://github.com/fmtlib/fmt/issues/2510.
 | ||
|  | #ifndef __ICL
 | ||
|  | #  if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \
 | ||
|  |       defined(__NVCOMPILER) | ||
|  | #    define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
 | ||
|  | #  endif
 | ||
|  | #  if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \
 | ||
|  |       FMT_ICC_VERSION || defined(__NVCOMPILER) | ||
|  | #    define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if FMT_MSC_VERSION
 | ||
|  | #  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Some compilers masquerade as both MSVC and GCC-likes or otherwise support
 | ||
|  | // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
 | ||
|  | // MSVC intrinsics if the clz and clzll builtins are not available.
 | ||
|  | #if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \
 | ||
|  |     !defined(FMT_BUILTIN_CTZLL) | ||
|  | FMT_BEGIN_NAMESPACE | ||
|  | namespace detail { | ||
|  | // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
 | ||
|  | #  if !defined(__clang__)
 | ||
|  | #    pragma intrinsic(_BitScanForward)
 | ||
|  | #    pragma intrinsic(_BitScanReverse)
 | ||
|  | #    if defined(_WIN64)
 | ||
|  | #      pragma intrinsic(_BitScanForward64)
 | ||
|  | #      pragma intrinsic(_BitScanReverse64)
 | ||
|  | #    endif
 | ||
|  | #  endif
 | ||
|  | 
 | ||
|  | inline auto clz(uint32_t x) -> int { | ||
|  |   unsigned long r = 0; | ||
|  |   _BitScanReverse(&r, x); | ||
|  |   FMT_ASSERT(x != 0, ""); | ||
|  |   // Static analysis complains about using uninitialized data
 | ||
|  |   // "r", but the only way that can happen is if "x" is 0,
 | ||
|  |   // which the callers guarantee to not happen.
 | ||
|  |   FMT_MSC_WARNING(suppress : 6102) | ||
|  |   return 31 ^ static_cast<int>(r); | ||
|  | } | ||
|  | #  define FMT_BUILTIN_CLZ(n) detail::clz(n)
 | ||
|  | 
 | ||
|  | inline auto clzll(uint64_t x) -> int { | ||
|  |   unsigned long r = 0; | ||
|  | #  ifdef _WIN64
 | ||
|  |   _BitScanReverse64(&r, x); | ||
|  | #  else
 | ||
|  |   // Scan the high 32 bits.
 | ||
|  |   if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32))) | ||
|  |     return 63 ^ static_cast<int>(r + 32); | ||
|  |   // Scan the low 32 bits.
 | ||
|  |   _BitScanReverse(&r, static_cast<uint32_t>(x)); | ||
|  | #  endif
 | ||
|  |   FMT_ASSERT(x != 0, ""); | ||
|  |   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
 | ||
|  |   return 63 ^ static_cast<int>(r); | ||
|  | } | ||
|  | #  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
 | ||
|  | 
 | ||
|  | inline auto ctz(uint32_t x) -> int { | ||
|  |   unsigned long r = 0; | ||
|  |   _BitScanForward(&r, x); | ||
|  |   FMT_ASSERT(x != 0, ""); | ||
|  |   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
 | ||
|  |   return static_cast<int>(r); | ||
|  | } | ||
|  | #  define FMT_BUILTIN_CTZ(n) detail::ctz(n)
 | ||
|  | 
 | ||
|  | inline auto ctzll(uint64_t x) -> int { | ||
|  |   unsigned long r = 0; | ||
|  |   FMT_ASSERT(x != 0, ""); | ||
|  |   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
 | ||
|  | #  ifdef _WIN64
 | ||
|  |   _BitScanForward64(&r, x); | ||
|  | #  else
 | ||
|  |   // Scan the low 32 bits.
 | ||
|  |   if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r); | ||
|  |   // Scan the high 32 bits.
 | ||
|  |   _BitScanForward(&r, static_cast<uint32_t>(x >> 32)); | ||
|  |   r += 32; | ||
|  | #  endif
 | ||
|  |   return static_cast<int>(r); | ||
|  | } | ||
|  | #  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
 | ||
|  | }  // namespace detail
 | ||
|  | FMT_END_NAMESPACE | ||
|  | #endif
 | ||
|  | 
 | ||
|  | FMT_BEGIN_NAMESPACE | ||
|  | namespace detail { | ||
|  | 
 | ||
|  | FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) { | ||
|  |   ignore_unused(condition); | ||
|  | #ifdef FMT_FUZZ
 | ||
|  |   if (condition) throw std::runtime_error("fuzzing limit reached"); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | template <typename CharT, CharT... C> struct string_literal { | ||
|  |   static constexpr CharT value[sizeof...(C)] = {C...}; | ||
|  |   constexpr operator basic_string_view<CharT>() const { | ||
|  |     return {value, sizeof...(C)}; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | #if FMT_CPLUSPLUS < 201703L
 | ||
|  | template <typename CharT, CharT... C> | ||
|  | constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)]; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Implementation of std::bit_cast for pre-C++20.
 | ||
|  | template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))> | ||
|  | FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To { | ||
|  | #ifdef __cpp_lib_bit_cast
 | ||
|  |   if (is_constant_evaluated()) return std::bit_cast<To>(from); | ||
|  | #endif
 | ||
|  |   auto to = To(); | ||
|  |   // The cast suppresses a bogus -Wclass-memaccess on GCC.
 | ||
|  |   std::memcpy(static_cast<void*>(&to), &from, sizeof(to)); | ||
|  |   return to; | ||
|  | } | ||
|  | 
 | ||
|  | inline auto is_big_endian() -> bool { | ||
|  | #ifdef _WIN32
 | ||
|  |   return false; | ||
|  | #elif defined(__BIG_ENDIAN__)
 | ||
|  |   return true; | ||
|  | #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
 | ||
|  |   return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__; | ||
|  | #else
 | ||
|  |   struct bytes { | ||
|  |     char data[sizeof(int)]; | ||
|  |   }; | ||
|  |   return bit_cast<bytes>(1).data[0] == 0; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | class uint128_fallback { | ||
|  |  private: | ||
|  |   uint64_t lo_, hi_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {} | ||
|  |   constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {} | ||
|  | 
 | ||
|  |   constexpr auto high() const noexcept -> uint64_t { return hi_; } | ||
|  |   constexpr auto low() const noexcept -> uint64_t { return lo_; } | ||
|  | 
 | ||
|  |   template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> | ||
|  |   constexpr explicit operator T() const { | ||
|  |     return static_cast<T>(lo_); | ||
|  |   } | ||
|  | 
 | ||
|  |   friend constexpr auto operator==(const uint128_fallback& lhs, | ||
|  |                                    const uint128_fallback& rhs) -> bool { | ||
|  |     return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_; | ||
|  |   } | ||
|  |   friend constexpr auto operator!=(const uint128_fallback& lhs, | ||
|  |                                    const uint128_fallback& rhs) -> bool { | ||
|  |     return !(lhs == rhs); | ||
|  |   } | ||
|  |   friend constexpr auto operator>(const uint128_fallback& lhs, | ||
|  |                                   const uint128_fallback& rhs) -> bool { | ||
|  |     return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_; | ||
|  |   } | ||
|  |   friend constexpr auto operator|(const uint128_fallback& lhs, | ||
|  |                                   const uint128_fallback& rhs) | ||
|  |       -> uint128_fallback { | ||
|  |     return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_}; | ||
|  |   } | ||
|  |   friend constexpr auto operator&(const uint128_fallback& lhs, | ||
|  |                                   const uint128_fallback& rhs) | ||
|  |       -> uint128_fallback { | ||
|  |     return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_}; | ||
|  |   } | ||
|  |   friend constexpr auto operator~(const uint128_fallback& n) | ||
|  |       -> uint128_fallback { | ||
|  |     return {~n.hi_, ~n.lo_}; | ||
|  |   } | ||
|  |   friend auto operator+(const uint128_fallback& lhs, | ||
|  |                         const uint128_fallback& rhs) -> uint128_fallback { | ||
|  |     auto result = uint128_fallback(lhs); | ||
|  |     result += rhs; | ||
|  |     return result; | ||
|  |   } | ||
|  |   friend auto operator*(const uint128_fallback& lhs, uint32_t rhs) | ||
|  |       -> uint128_fallback { | ||
|  |     FMT_ASSERT(lhs.hi_ == 0, ""); | ||
|  |     uint64_t hi = (lhs.lo_ >> 32) * rhs; | ||
|  |     uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs; | ||
|  |     uint64_t new_lo = (hi << 32) + lo; | ||
|  |     return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo}; | ||
|  |   } | ||
|  |   friend auto operator-(const uint128_fallback& lhs, uint64_t rhs) | ||
|  |       -> uint128_fallback { | ||
|  |     return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs}; | ||
|  |   } | ||
|  |   FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback { | ||
|  |     if (shift == 64) return {0, hi_}; | ||
|  |     if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64); | ||
|  |     return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)}; | ||
|  |   } | ||
|  |   FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback { | ||
|  |     if (shift == 64) return {lo_, 0}; | ||
|  |     if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64); | ||
|  |     return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)}; | ||
|  |   } | ||
|  |   FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& { | ||
|  |     return *this = *this >> shift; | ||
|  |   } | ||
|  |   FMT_CONSTEXPR void operator+=(uint128_fallback n) { | ||
|  |     uint64_t new_lo = lo_ + n.lo_; | ||
|  |     uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0); | ||
|  |     FMT_ASSERT(new_hi >= hi_, ""); | ||
|  |     lo_ = new_lo; | ||
|  |     hi_ = new_hi; | ||
|  |   } | ||
|  |   FMT_CONSTEXPR void operator&=(uint128_fallback n) { | ||
|  |     lo_ &= n.lo_; | ||
|  |     hi_ &= n.hi_; | ||
|  |   } | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 auto operator+=(uint64_t n) noexcept -> uint128_fallback& { | ||
|  |     if (is_constant_evaluated()) { | ||
|  |       lo_ += n; | ||
|  |       hi_ += (lo_ < n ? 1 : 0); | ||
|  |       return *this; | ||
|  |     } | ||
|  | #if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
 | ||
|  |     unsigned long long carry; | ||
|  |     lo_ = __builtin_addcll(lo_, n, 0, &carry); | ||
|  |     hi_ += carry; | ||
|  | #elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
 | ||
|  |     unsigned long long result; | ||
|  |     auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result); | ||
|  |     lo_ = result; | ||
|  |     hi_ += carry; | ||
|  | #elif defined(_MSC_VER) && defined(_M_X64)
 | ||
|  |     auto carry = _addcarry_u64(0, lo_, n, &lo_); | ||
|  |     _addcarry_u64(carry, hi_, 0, &hi_); | ||
|  | #else
 | ||
|  |     lo_ += n; | ||
|  |     hi_ += (lo_ < n ? 1 : 0); | ||
|  | #endif
 | ||
|  |     return *this; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>; | ||
|  | 
 | ||
|  | #ifdef UINTPTR_MAX
 | ||
|  | using uintptr_t = ::uintptr_t; | ||
|  | #else
 | ||
|  | using uintptr_t = uint128_t; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Returns the largest possible value for type T. Same as
 | ||
|  | // std::numeric_limits<T>::max() but shorter and not affected by the max macro.
 | ||
|  | template <typename T> constexpr auto max_value() -> T { | ||
|  |   return (std::numeric_limits<T>::max)(); | ||
|  | } | ||
|  | template <typename T> constexpr auto num_bits() -> int { | ||
|  |   return std::numeric_limits<T>::digits; | ||
|  | } | ||
|  | // std::numeric_limits<T>::digits may return 0 for 128-bit ints.
 | ||
|  | template <> constexpr auto num_bits<int128_opt>() -> int { return 128; } | ||
|  | template <> constexpr auto num_bits<uint128_t>() -> int { return 128; } | ||
|  | 
 | ||
|  | // A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
 | ||
|  | // and 128-bit pointers to uint128_fallback.
 | ||
|  | template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))> | ||
|  | inline auto bit_cast(const From& from) -> To { | ||
|  |   constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned)); | ||
|  |   struct data_t { | ||
|  |     unsigned value[static_cast<unsigned>(size)]; | ||
|  |   } data = bit_cast<data_t>(from); | ||
|  |   auto result = To(); | ||
|  |   if (const_check(is_big_endian())) { | ||
|  |     for (int i = 0; i < size; ++i) | ||
|  |       result = (result << num_bits<unsigned>()) | data.value[i]; | ||
|  |   } else { | ||
|  |     for (int i = size - 1; i >= 0; --i) | ||
|  |       result = (result << num_bits<unsigned>()) | data.value[i]; | ||
|  |   } | ||
|  |   return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename UInt> | ||
|  | FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int { | ||
|  |   int lz = 0; | ||
|  |   constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1); | ||
|  |   for (; (n & msb_mask) == 0; n <<= 1) lz++; | ||
|  |   return lz; | ||
|  | } | ||
|  | 
 | ||
|  | FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int { | ||
|  | #ifdef FMT_BUILTIN_CLZ
 | ||
|  |   if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n); | ||
|  | #endif
 | ||
|  |   return countl_zero_fallback(n); | ||
|  | } | ||
|  | 
 | ||
|  | FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int { | ||
|  | #ifdef FMT_BUILTIN_CLZLL
 | ||
|  |   if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n); | ||
|  | #endif
 | ||
|  |   return countl_zero_fallback(n); | ||
|  | } | ||
|  | 
 | ||
|  | FMT_INLINE void assume(bool condition) { | ||
|  |   (void)condition; | ||
|  | #if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
 | ||
|  |   __builtin_assume(condition); | ||
|  | #elif FMT_GCC_VERSION
 | ||
|  |   if (!condition) __builtin_unreachable(); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | // An approximation of iterator_t for pre-C++20 systems.
 | ||
|  | template <typename T> | ||
|  | using iterator_t = decltype(std::begin(std::declval<T&>())); | ||
|  | template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>())); | ||
|  | 
 | ||
|  | // A workaround for std::string not having mutable data() until C++17.
 | ||
|  | template <typename Char> | ||
|  | inline auto get_data(std::basic_string<Char>& s) -> Char* { | ||
|  |   return &s[0]; | ||
|  | } | ||
|  | template <typename Container> | ||
|  | inline auto get_data(Container& c) -> typename Container::value_type* { | ||
|  |   return c.data(); | ||
|  | } | ||
|  | 
 | ||
|  | // Attempts to reserve space for n extra characters in the output range.
 | ||
|  | // Returns a pointer to the reserved range or a reference to it.
 | ||
|  | template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> | ||
|  | #if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
 | ||
|  | __attribute__((no_sanitize("undefined"))) | ||
|  | #endif
 | ||
|  | inline auto | ||
|  | reserve(std::back_insert_iterator<Container> it, size_t n) -> | ||
|  |     typename Container::value_type* { | ||
|  |   Container& c = get_container(it); | ||
|  |   size_t size = c.size(); | ||
|  |   c.resize(size + n); | ||
|  |   return get_data(c) + size; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> { | ||
|  |   buffer<T>& buf = get_container(it); | ||
|  |   buf.try_reserve(buf.size() + n); | ||
|  |   return it; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Iterator> | ||
|  | constexpr auto reserve(Iterator& it, size_t) -> Iterator& { | ||
|  |   return it; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt> | ||
|  | using reserve_iterator = | ||
|  |     remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>; | ||
|  | 
 | ||
|  | template <typename T, typename OutputIt> | ||
|  | constexpr auto to_pointer(OutputIt, size_t) -> T* { | ||
|  |   return nullptr; | ||
|  | } | ||
|  | template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* { | ||
|  |   buffer<T>& buf = get_container(it); | ||
|  |   auto size = buf.size(); | ||
|  |   if (buf.capacity() < size + n) return nullptr; | ||
|  |   buf.try_resize(size + n); | ||
|  |   return buf.data() + size; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)> | ||
|  | inline auto base_iterator(std::back_insert_iterator<Container> it, | ||
|  |                           typename Container::value_type*) | ||
|  |     -> std::back_insert_iterator<Container> { | ||
|  |   return it; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Iterator> | ||
|  | constexpr auto base_iterator(Iterator, Iterator it) -> Iterator { | ||
|  |   return it; | ||
|  | } | ||
|  | 
 | ||
|  | // <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
 | ||
|  | // instead (#1998).
 | ||
|  | template <typename OutputIt, typename Size, typename T> | ||
|  | FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value) | ||
|  |     -> OutputIt { | ||
|  |   for (Size i = 0; i < count; ++i) *out++ = value; | ||
|  |   return out; | ||
|  | } | ||
|  | template <typename T, typename Size> | ||
|  | FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* { | ||
|  |   if (is_constant_evaluated()) { | ||
|  |     return fill_n<T*, Size, T>(out, count, value); | ||
|  |   } | ||
|  |   std::memset(out, value, to_unsigned(count)); | ||
|  |   return out + count; | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef __cpp_char8_t
 | ||
|  | using char8_type = char8_t; | ||
|  | #else
 | ||
|  | enum char8_type : unsigned char {}; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | template <typename OutChar, typename InputIt, typename OutputIt> | ||
|  | FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end, | ||
|  |                                                   OutputIt out) -> OutputIt { | ||
|  |   return copy_str<OutChar>(begin, end, out); | ||
|  | } | ||
|  | 
 | ||
|  | // A public domain branchless UTF-8 decoder by Christopher Wellons:
 | ||
|  | // https://github.com/skeeto/branchless-utf8
 | ||
|  | /* Decode the next character, c, from s, reporting errors in e.
 | ||
|  |  * | ||
|  |  * Since this is a branchless decoder, four bytes will be read from the | ||
|  |  * buffer regardless of the actual length of the next character. This | ||
|  |  * means the buffer _must_ have at least three bytes of zero padding | ||
|  |  * following the end of the data stream. | ||
|  |  * | ||
|  |  * Errors are reported in e, which will be non-zero if the parsed | ||
|  |  * character was somehow invalid: invalid byte sequence, non-canonical | ||
|  |  * encoding, or a surrogate half. | ||
|  |  * | ||
|  |  * The function returns a pointer to the next character. When an error | ||
|  |  * occurs, this pointer will be a guess that depends on the particular | ||
|  |  * error, but it will always advance at least one byte. | ||
|  |  */ | ||
|  | FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e) | ||
|  |     -> const char* { | ||
|  |   constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; | ||
|  |   constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; | ||
|  |   constexpr const int shiftc[] = {0, 18, 12, 6, 0}; | ||
|  |   constexpr const int shifte[] = {0, 6, 4, 2, 0}; | ||
|  | 
 | ||
|  |   int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4" | ||
|  |       [static_cast<unsigned char>(*s) >> 3]; | ||
|  |   // Compute the pointer to the next character early so that the next
 | ||
|  |   // iteration can start working on the next character. Neither Clang
 | ||
|  |   // nor GCC figure out this reordering on their own.
 | ||
|  |   const char* next = s + len + !len; | ||
|  | 
 | ||
|  |   using uchar = unsigned char; | ||
|  | 
 | ||
|  |   // Assume a four-byte character and load four bytes. Unused bits are
 | ||
|  |   // shifted out.
 | ||
|  |   *c = uint32_t(uchar(s[0]) & masks[len]) << 18; | ||
|  |   *c |= uint32_t(uchar(s[1]) & 0x3f) << 12; | ||
|  |   *c |= uint32_t(uchar(s[2]) & 0x3f) << 6; | ||
|  |   *c |= uint32_t(uchar(s[3]) & 0x3f) << 0; | ||
|  |   *c >>= shiftc[len]; | ||
|  | 
 | ||
|  |   // Accumulate the various error conditions.
 | ||
|  |   *e = (*c < mins[len]) << 6;       // non-canonical encoding
 | ||
|  |   *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
 | ||
|  |   *e |= (*c > 0x10FFFF) << 8;       // out of range?
 | ||
|  |   *e |= (uchar(s[1]) & 0xc0) >> 2; | ||
|  |   *e |= (uchar(s[2]) & 0xc0) >> 4; | ||
|  |   *e |= uchar(s[3]) >> 6; | ||
|  |   *e ^= 0x2a;  // top two bits of each tail byte correct?
 | ||
|  |   *e >>= shifte[len]; | ||
|  | 
 | ||
|  |   return next; | ||
|  | } | ||
|  | 
 | ||
|  | constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t(); | ||
|  | 
 | ||
|  | // Invokes f(cp, sv) for every code point cp in s with sv being the string view
 | ||
|  | // corresponding to the code point. cp is invalid_code_point on error.
 | ||
|  | template <typename F> | ||
|  | FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { | ||
|  |   auto decode = [f](const char* buf_ptr, const char* ptr) { | ||
|  |     auto cp = uint32_t(); | ||
|  |     auto error = 0; | ||
|  |     auto end = utf8_decode(buf_ptr, &cp, &error); | ||
|  |     bool result = f(error ? invalid_code_point : cp, | ||
|  |                     string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr))); | ||
|  |     return result ? (error ? buf_ptr + 1 : end) : nullptr; | ||
|  |   }; | ||
|  |   auto p = s.data(); | ||
|  |   const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
 | ||
|  |   if (s.size() >= block_size) { | ||
|  |     for (auto end = p + s.size() - block_size + 1; p < end;) { | ||
|  |       p = decode(p, p); | ||
|  |       if (!p) return; | ||
|  |     } | ||
|  |   } | ||
|  |   if (auto num_chars_left = s.data() + s.size() - p) { | ||
|  |     char buf[2 * block_size - 1] = {}; | ||
|  |     copy_str<char>(p, p + num_chars_left, buf); | ||
|  |     const char* buf_ptr = buf; | ||
|  |     do { | ||
|  |       auto end = decode(buf_ptr, p); | ||
|  |       if (!end) return; | ||
|  |       p += end - buf_ptr; | ||
|  |       buf_ptr = end; | ||
|  |     } while (buf_ptr - buf < num_chars_left); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char> | ||
|  | inline auto compute_width(basic_string_view<Char> s) -> size_t { | ||
|  |   return s.size(); | ||
|  | } | ||
|  | 
 | ||
|  | // Computes approximate display width of a UTF-8 string.
 | ||
|  | FMT_CONSTEXPR inline auto compute_width(string_view s) -> size_t { | ||
|  |   size_t num_code_points = 0; | ||
|  |   // It is not a lambda for compatibility with C++14.
 | ||
|  |   struct count_code_points { | ||
|  |     size_t* count; | ||
|  |     FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool { | ||
|  |       *count += detail::to_unsigned( | ||
|  |           1 + | ||
|  |           (cp >= 0x1100 && | ||
|  |            (cp <= 0x115f ||  // Hangul Jamo init. consonants
 | ||
|  |             cp == 0x2329 ||  // LEFT-POINTING ANGLE BRACKET
 | ||
|  |             cp == 0x232a ||  // RIGHT-POINTING ANGLE BRACKET
 | ||
|  |             // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
 | ||
|  |             (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || | ||
|  |             (cp >= 0xac00 && cp <= 0xd7a3) ||    // Hangul Syllables
 | ||
|  |             (cp >= 0xf900 && cp <= 0xfaff) ||    // CJK Compatibility Ideographs
 | ||
|  |             (cp >= 0xfe10 && cp <= 0xfe19) ||    // Vertical Forms
 | ||
|  |             (cp >= 0xfe30 && cp <= 0xfe6f) ||    // CJK Compatibility Forms
 | ||
|  |             (cp >= 0xff00 && cp <= 0xff60) ||    // Fullwidth Forms
 | ||
|  |             (cp >= 0xffe0 && cp <= 0xffe6) ||    // Fullwidth Forms
 | ||
|  |             (cp >= 0x20000 && cp <= 0x2fffd) ||  // CJK
 | ||
|  |             (cp >= 0x30000 && cp <= 0x3fffd) || | ||
|  |             // Miscellaneous Symbols and Pictographs + Emoticons:
 | ||
|  |             (cp >= 0x1f300 && cp <= 0x1f64f) || | ||
|  |             // Supplemental Symbols and Pictographs:
 | ||
|  |             (cp >= 0x1f900 && cp <= 0x1f9ff)))); | ||
|  |       return true; | ||
|  |     } | ||
|  |   }; | ||
|  |   // We could avoid branches by using utf8_decode directly.
 | ||
|  |   for_each_codepoint(s, count_code_points{&num_code_points}); | ||
|  |   return num_code_points; | ||
|  | } | ||
|  | 
 | ||
|  | inline auto compute_width(basic_string_view<char8_type> s) -> size_t { | ||
|  |   return compute_width( | ||
|  |       string_view(reinterpret_cast<const char*>(s.data()), s.size())); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char> | ||
|  | inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t { | ||
|  |   size_t size = s.size(); | ||
|  |   return n < size ? n : size; | ||
|  | } | ||
|  | 
 | ||
|  | // Calculates the index of the nth code point in a UTF-8 string.
 | ||
|  | inline auto code_point_index(string_view s, size_t n) -> size_t { | ||
|  |   size_t result = s.size(); | ||
|  |   const char* begin = s.begin(); | ||
|  |   for_each_codepoint(s, [begin, &n, &result](uint32_t, string_view sv) { | ||
|  |     if (n != 0) { | ||
|  |       --n; | ||
|  |       return true; | ||
|  |     } | ||
|  |     result = to_unsigned(sv.begin() - begin); | ||
|  |     return false; | ||
|  |   }); | ||
|  |   return result; | ||
|  | } | ||
|  | 
 | ||
|  | inline auto code_point_index(basic_string_view<char8_type> s, size_t n) | ||
|  |     -> size_t { | ||
|  |   return code_point_index( | ||
|  |       string_view(reinterpret_cast<const char*>(s.data()), s.size()), n); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> struct is_integral : std::is_integral<T> {}; | ||
|  | template <> struct is_integral<int128_opt> : std::true_type {}; | ||
|  | template <> struct is_integral<uint128_t> : std::true_type {}; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | using is_signed = | ||
|  |     std::integral_constant<bool, std::numeric_limits<T>::is_signed || | ||
|  |                                      std::is_same<T, int128_opt>::value>; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | using is_integer = | ||
|  |     bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value && | ||
|  |                   !std::is_same<T, char>::value && | ||
|  |                   !std::is_same<T, wchar_t>::value>; | ||
|  | 
 | ||
|  | #ifndef FMT_USE_FLOAT
 | ||
|  | #  define FMT_USE_FLOAT 1
 | ||
|  | #endif
 | ||
|  | #ifndef FMT_USE_DOUBLE
 | ||
|  | #  define FMT_USE_DOUBLE 1
 | ||
|  | #endif
 | ||
|  | #ifndef FMT_USE_LONG_DOUBLE
 | ||
|  | #  define FMT_USE_LONG_DOUBLE 1
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef FMT_USE_FLOAT128
 | ||
|  | #  ifdef __clang__
 | ||
|  | // Clang emulates GCC, so it has to appear early.
 | ||
|  | #    if FMT_HAS_INCLUDE(<quadmath.h>)
 | ||
|  | #      define FMT_USE_FLOAT128 1
 | ||
|  | #    endif
 | ||
|  | #  elif defined(__GNUC__)
 | ||
|  | // GNU C++:
 | ||
|  | #    if defined(_GLIBCXX_USE_FLOAT128) && !defined(__STRICT_ANSI__)
 | ||
|  | #      define FMT_USE_FLOAT128 1
 | ||
|  | #    endif
 | ||
|  | #  endif
 | ||
|  | #  ifndef FMT_USE_FLOAT128
 | ||
|  | #    define FMT_USE_FLOAT128 0
 | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if FMT_USE_FLOAT128
 | ||
|  | using float128 = __float128; | ||
|  | #else
 | ||
|  | using float128 = void; | ||
|  | #endif
 | ||
|  | template <typename T> using is_float128 = std::is_same<T, float128>; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | using is_floating_point = | ||
|  |     bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>; | ||
|  | 
 | ||
|  | template <typename T, bool = std::is_floating_point<T>::value> | ||
|  | struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 && | ||
|  |                                      sizeof(T) <= sizeof(double)> {}; | ||
|  | template <typename T> struct is_fast_float<T, false> : std::false_type {}; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>; | ||
|  | 
 | ||
|  | #ifndef FMT_USE_FULL_CACHE_DRAGONBOX
 | ||
|  | #  define FMT_USE_FULL_CACHE_DRAGONBOX 0
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | template <typename U> | ||
|  | void buffer<T>::append(const U* begin, const U* end) { | ||
|  |   while (begin != end) { | ||
|  |     auto count = to_unsigned(end - begin); | ||
|  |     try_reserve(size_ + count); | ||
|  |     auto free_cap = capacity_ - size_; | ||
|  |     if (free_cap < count) count = free_cap; | ||
|  |     std::uninitialized_copy_n(begin, count, ptr_ + size_); | ||
|  |     size_ += count; | ||
|  |     begin += count; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, typename Enable = void> | ||
|  | struct is_locale : std::false_type {}; | ||
|  | template <typename T> | ||
|  | struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {}; | ||
|  | }  // namespace detail
 | ||
|  | 
 | ||
|  | FMT_BEGIN_EXPORT | ||
|  | 
 | ||
|  | // The number of characters to store in the basic_memory_buffer object itself
 | ||
|  | // to avoid dynamic memory allocation.
 | ||
|  | enum { inline_buffer_size = 500 }; | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   A dynamically growing memory buffer for trivially copyable/constructible types | ||
|  |   with the first ``SIZE`` elements stored in the object itself. | ||
|  | 
 | ||
|  |   You can use the ``memory_buffer`` type alias for ``char`` instead. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |      auto out = fmt::memory_buffer(); | ||
|  |      fmt::format_to(std::back_inserter(out), "The answer is {}.", 42); | ||
|  | 
 | ||
|  |   This will append the following output to the ``out`` object: | ||
|  | 
 | ||
|  |   .. code-block:: none | ||
|  | 
 | ||
|  |      The answer is 42. | ||
|  | 
 | ||
|  |   The output can be converted to an ``std::string`` with ``to_string(out)``. | ||
|  |   \endrst | ||
|  |  */ | ||
|  | template <typename T, size_t SIZE = inline_buffer_size, | ||
|  |           typename Allocator = std::allocator<T>> | ||
|  | class basic_memory_buffer final : public detail::buffer<T> { | ||
|  |  private: | ||
|  |   T store_[SIZE]; | ||
|  | 
 | ||
|  |   // Don't inherit from Allocator to avoid generating type_info for it.
 | ||
|  |   FMT_NO_UNIQUE_ADDRESS Allocator alloc_; | ||
|  | 
 | ||
|  |   // Deallocate memory allocated by the buffer.
 | ||
|  |   FMT_CONSTEXPR20 void deallocate() { | ||
|  |     T* data = this->data(); | ||
|  |     if (data != store_) alloc_.deallocate(data, this->capacity()); | ||
|  |   } | ||
|  | 
 | ||
|  |  protected: | ||
|  |   FMT_CONSTEXPR20 void grow(size_t size) override { | ||
|  |     detail::abort_fuzzing_if(size > 5000); | ||
|  |     const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_); | ||
|  |     size_t old_capacity = this->capacity(); | ||
|  |     size_t new_capacity = old_capacity + old_capacity / 2; | ||
|  |     if (size > new_capacity) | ||
|  |       new_capacity = size; | ||
|  |     else if (new_capacity > max_size) | ||
|  |       new_capacity = size > max_size ? size : max_size; | ||
|  |     T* old_data = this->data(); | ||
|  |     T* new_data = | ||
|  |         std::allocator_traits<Allocator>::allocate(alloc_, new_capacity); | ||
|  |     // Suppress a bogus -Wstringop-overflow in gcc 13.1 (#3481).
 | ||
|  |     detail::assume(this->size() <= new_capacity); | ||
|  |     // The following code doesn't throw, so the raw pointer above doesn't leak.
 | ||
|  |     std::uninitialized_copy_n(old_data, this->size(), new_data); | ||
|  |     this->set(new_data, new_capacity); | ||
|  |     // deallocate must not throw according to the standard, but even if it does,
 | ||
|  |     // the buffer already uses the new storage and will deallocate it in
 | ||
|  |     // destructor.
 | ||
|  |     if (old_data != store_) alloc_.deallocate(old_data, old_capacity); | ||
|  |   } | ||
|  | 
 | ||
|  |  public: | ||
|  |   using value_type = T; | ||
|  |   using const_reference = const T&; | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 explicit basic_memory_buffer( | ||
|  |       const Allocator& alloc = Allocator()) | ||
|  |       : alloc_(alloc) { | ||
|  |     this->set(store_, SIZE); | ||
|  |     if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T()); | ||
|  |   } | ||
|  |   FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); } | ||
|  | 
 | ||
|  |  private: | ||
|  |   // Move data from other to this buffer.
 | ||
|  |   FMT_CONSTEXPR20 void move(basic_memory_buffer& other) { | ||
|  |     alloc_ = std::move(other.alloc_); | ||
|  |     T* data = other.data(); | ||
|  |     size_t size = other.size(), capacity = other.capacity(); | ||
|  |     if (data == other.store_) { | ||
|  |       this->set(store_, capacity); | ||
|  |       detail::copy_str<T>(other.store_, other.store_ + size, store_); | ||
|  |     } else { | ||
|  |       this->set(data, capacity); | ||
|  |       // Set pointer to the inline array so that delete is not called
 | ||
|  |       // when deallocating.
 | ||
|  |       other.set(other.store_, 0); | ||
|  |       other.clear(); | ||
|  |     } | ||
|  |     this->resize(size); | ||
|  |   } | ||
|  | 
 | ||
|  |  public: | ||
|  |   /**
 | ||
|  |     \rst | ||
|  |     Constructs a :class:`fmt::basic_memory_buffer` object moving the content | ||
|  |     of the other object to it. | ||
|  |     \endrst | ||
|  |    */ | ||
|  |   FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept { | ||
|  |     move(other); | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |     \rst | ||
|  |     Moves the content of the other ``basic_memory_buffer`` object to this one. | ||
|  |     \endrst | ||
|  |    */ | ||
|  |   auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& { | ||
|  |     FMT_ASSERT(this != &other, ""); | ||
|  |     deallocate(); | ||
|  |     move(other); | ||
|  |     return *this; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns a copy of the allocator associated with this buffer.
 | ||
|  |   auto get_allocator() const -> Allocator { return alloc_; } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |     Resizes the buffer to contain *count* elements. If T is a POD type new | ||
|  |     elements may not be initialized. | ||
|  |    */ | ||
|  |   FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); } | ||
|  | 
 | ||
|  |   /** Increases the buffer capacity to *new_capacity*. */ | ||
|  |   void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } | ||
|  | 
 | ||
|  |   using detail::buffer<T>::append; | ||
|  |   template <typename ContiguousRange> | ||
|  |   void append(const ContiguousRange& range) { | ||
|  |     append(range.data(), range.data() + range.size()); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | using memory_buffer = basic_memory_buffer<char>; | ||
|  | 
 | ||
|  | template <typename T, size_t SIZE, typename Allocator> | ||
|  | struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type { | ||
|  | }; | ||
|  | 
 | ||
|  | FMT_END_EXPORT | ||
|  | namespace detail { | ||
|  | FMT_API auto write_console(int fd, string_view text) -> bool; | ||
|  | FMT_API auto write_console(std::FILE* f, string_view text) -> bool; | ||
|  | FMT_API void print(std::FILE*, string_view); | ||
|  | }  // namespace detail
 | ||
|  | 
 | ||
|  | FMT_BEGIN_EXPORT | ||
|  | 
 | ||
|  | // Suppress a misleading warning in older versions of clang.
 | ||
|  | #if FMT_CLANG_VERSION
 | ||
|  | #  pragma clang diagnostic ignored "-Wweak-vtables"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /** An error reported from a formatting function. */ | ||
|  | class FMT_SO_VISIBILITY("default") format_error : public std::runtime_error { | ||
|  |  public: | ||
|  |   using std::runtime_error::runtime_error; | ||
|  | }; | ||
|  | 
 | ||
|  | namespace detail_exported { | ||
|  | #if FMT_USE_NONTYPE_TEMPLATE_ARGS
 | ||
|  | template <typename Char, size_t N> struct fixed_string { | ||
|  |   constexpr fixed_string(const Char (&str)[N]) { | ||
|  |     detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str), | ||
|  |                                                str + N, data); | ||
|  |   } | ||
|  |   Char data[N] = {}; | ||
|  | }; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Converts a compile-time string to basic_string_view.
 | ||
|  | template <typename Char, size_t N> | ||
|  | constexpr auto compile_string_to_view(const Char (&s)[N]) | ||
|  |     -> basic_string_view<Char> { | ||
|  |   // Remove trailing NUL character if needed. Won't be present if this is used
 | ||
|  |   // with a raw character array (i.e. not defined as a string).
 | ||
|  |   return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)}; | ||
|  | } | ||
|  | template <typename Char> | ||
|  | constexpr auto compile_string_to_view(detail::std_string_view<Char> s) | ||
|  |     -> basic_string_view<Char> { | ||
|  |   return {s.data(), s.size()}; | ||
|  | } | ||
|  | }  // namespace detail_exported
 | ||
|  | 
 | ||
|  | class loc_value { | ||
|  |  private: | ||
|  |   basic_format_arg<format_context> value_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)> | ||
|  |   loc_value(T value) : value_(detail::make_arg<format_context>(value)) {} | ||
|  | 
 | ||
|  |   template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)> | ||
|  |   loc_value(T) {} | ||
|  | 
 | ||
|  |   template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) { | ||
|  |     return visit_format_arg(vis, value_); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // A locale facet that formats values in UTF-8.
 | ||
|  | // It is parameterized on the locale to avoid the heavy <locale> include.
 | ||
|  | template <typename Locale> class format_facet : public Locale::facet { | ||
|  |  private: | ||
|  |   std::string separator_; | ||
|  |   std::string grouping_; | ||
|  |   std::string decimal_point_; | ||
|  | 
 | ||
|  |  protected: | ||
|  |   virtual auto do_put(appender out, loc_value val, | ||
|  |                       const format_specs<>& specs) const -> bool; | ||
|  | 
 | ||
|  |  public: | ||
|  |   static FMT_API typename Locale::id id; | ||
|  | 
 | ||
|  |   explicit format_facet(Locale& loc); | ||
|  |   explicit format_facet(string_view sep = "", | ||
|  |                         std::initializer_list<unsigned char> g = {3}, | ||
|  |                         std::string decimal_point = ".") | ||
|  |       : separator_(sep.data(), sep.size()), | ||
|  |         grouping_(g.begin(), g.end()), | ||
|  |         decimal_point_(decimal_point) {} | ||
|  | 
 | ||
|  |   auto put(appender out, loc_value val, const format_specs<>& specs) const | ||
|  |       -> bool { | ||
|  |     return do_put(out, val, specs); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | namespace detail { | ||
|  | 
 | ||
|  | // Returns true if value is negative, false otherwise.
 | ||
|  | // Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
 | ||
|  | template <typename T, FMT_ENABLE_IF(is_signed<T>::value)> | ||
|  | constexpr auto is_negative(T value) -> bool { | ||
|  |   return value < 0; | ||
|  | } | ||
|  | template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)> | ||
|  | constexpr auto is_negative(T) -> bool { | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool { | ||
|  |   if (std::is_same<T, float>()) return FMT_USE_FLOAT; | ||
|  |   if (std::is_same<T, double>()) return FMT_USE_DOUBLE; | ||
|  |   if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE; | ||
|  |   return true; | ||
|  | } | ||
|  | 
 | ||
|  | // Smallest of uint32_t, uint64_t, uint128_t that is large enough to
 | ||
|  | // represent all values of an integral type T.
 | ||
|  | template <typename T> | ||
|  | using uint32_or_64_or_128_t = | ||
|  |     conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, | ||
|  |                   uint32_t, | ||
|  |                   conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>; | ||
|  | template <typename T> | ||
|  | using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>; | ||
|  | 
 | ||
|  | #define FMT_POWERS_OF_10(factor)                                  \
 | ||
|  |   factor * 10, (factor) * 100, (factor) * 1000, (factor) * 10000, \ | ||
|  |       (factor) * 100000, (factor) * 1000000, (factor) * 10000000, \ | ||
|  |       (factor) * 100000000, (factor) * 1000000000 | ||
|  | 
 | ||
|  | // Converts value in the range [0, 100) to a string.
 | ||
|  | constexpr auto digits2(size_t value) -> const char* { | ||
|  |   // GCC generates slightly better code when value is pointer-size.
 | ||
|  |   return &"0001020304050607080910111213141516171819" | ||
|  |          "2021222324252627282930313233343536373839" | ||
|  |          "4041424344454647484950515253545556575859" | ||
|  |          "6061626364656667686970717273747576777879" | ||
|  |          "8081828384858687888990919293949596979899"[value * 2]; | ||
|  | } | ||
|  | 
 | ||
|  | // Sign is a template parameter to workaround a bug in gcc 4.8.
 | ||
|  | template <typename Char, typename Sign> constexpr auto sign(Sign s) -> Char { | ||
|  | #if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
 | ||
|  |   static_assert(std::is_same<Sign, sign_t>::value, ""); | ||
|  | #endif
 | ||
|  |   return static_cast<Char>("\0-+ "[s]); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int { | ||
|  |   int count = 1; | ||
|  |   for (;;) { | ||
|  |     // Integer division is slow so do it for a group of four digits instead
 | ||
|  |     // of for every digit. The idea comes from the talk by Alexandrescu
 | ||
|  |     // "Three Optimization Tips for C++". See speed-test for a comparison.
 | ||
|  |     if (n < 10) return count; | ||
|  |     if (n < 100) return count + 1; | ||
|  |     if (n < 1000) return count + 2; | ||
|  |     if (n < 10000) return count + 3; | ||
|  |     n /= 10000u; | ||
|  |     count += 4; | ||
|  |   } | ||
|  | } | ||
|  | #if FMT_USE_INT128
 | ||
|  | FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int { | ||
|  |   return count_digits_fallback(n); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef FMT_BUILTIN_CLZLL
 | ||
|  | // It is a separate function rather than a part of count_digits to workaround
 | ||
|  | // the lack of static constexpr in constexpr functions.
 | ||
|  | inline auto do_count_digits(uint64_t n) -> int { | ||
|  |   // This has comparable performance to the version by Kendall Willets
 | ||
|  |   // (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
 | ||
|  |   // but uses smaller tables.
 | ||
|  |   // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
 | ||
|  |   static constexpr uint8_t bsr2log10[] = { | ||
|  |       1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5, | ||
|  |       6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10, | ||
|  |       10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, | ||
|  |       15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; | ||
|  |   auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63]; | ||
|  |   static constexpr const uint64_t zero_or_powers_of_10[] = { | ||
|  |       0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL), | ||
|  |       10000000000000000000ULL}; | ||
|  |   return t - (n < zero_or_powers_of_10[t]); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Returns the number of decimal digits in n. Leading zeros are not counted
 | ||
|  | // except for n == 0 in which case count_digits returns 1.
 | ||
|  | FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int { | ||
|  | #ifdef FMT_BUILTIN_CLZLL
 | ||
|  |   if (!is_constant_evaluated()) { | ||
|  |     return do_count_digits(n); | ||
|  |   } | ||
|  | #endif
 | ||
|  |   return count_digits_fallback(n); | ||
|  | } | ||
|  | 
 | ||
|  | // Counts the number of digits in n. BITS = log2(radix).
 | ||
|  | template <int BITS, typename UInt> | ||
|  | FMT_CONSTEXPR auto count_digits(UInt n) -> int { | ||
|  | #ifdef FMT_BUILTIN_CLZ
 | ||
|  |   if (!is_constant_evaluated() && num_bits<UInt>() == 32) | ||
|  |     return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1; | ||
|  | #endif
 | ||
|  |   // Lambda avoids unreachable code warnings from NVHPC.
 | ||
|  |   return [](UInt m) { | ||
|  |     int num_digits = 0; | ||
|  |     do { | ||
|  |       ++num_digits; | ||
|  |     } while ((m >>= BITS) != 0); | ||
|  |     return num_digits; | ||
|  |   }(n); | ||
|  | } | ||
|  | 
 | ||
|  | #ifdef FMT_BUILTIN_CLZ
 | ||
|  | // It is a separate function rather than a part of count_digits to workaround
 | ||
|  | // the lack of static constexpr in constexpr functions.
 | ||
|  | FMT_INLINE auto do_count_digits(uint32_t n) -> int { | ||
|  | // An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
 | ||
|  | // This increments the upper 32 bits (log10(T) - 1) when >= T is added.
 | ||
|  | #  define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
 | ||
|  |   static constexpr uint64_t table[] = { | ||
|  |       FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8
 | ||
|  |       FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64
 | ||
|  |       FMT_INC(100),        FMT_INC(100),        FMT_INC(100),         // 512
 | ||
|  |       FMT_INC(1000),       FMT_INC(1000),       FMT_INC(1000),        // 4096
 | ||
|  |       FMT_INC(10000),      FMT_INC(10000),      FMT_INC(10000),       // 32k
 | ||
|  |       FMT_INC(100000),     FMT_INC(100000),     FMT_INC(100000),      // 256k
 | ||
|  |       FMT_INC(1000000),    FMT_INC(1000000),    FMT_INC(1000000),     // 2048k
 | ||
|  |       FMT_INC(10000000),   FMT_INC(10000000),   FMT_INC(10000000),    // 16M
 | ||
|  |       FMT_INC(100000000),  FMT_INC(100000000),  FMT_INC(100000000),   // 128M
 | ||
|  |       FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000),  // 1024M
 | ||
|  |       FMT_INC(1000000000), FMT_INC(1000000000)                        // 4B
 | ||
|  |   }; | ||
|  |   auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31]; | ||
|  |   return static_cast<int>((n + inc) >> 32); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // Optional version of count_digits for better performance on 32-bit platforms.
 | ||
|  | FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int { | ||
|  | #ifdef FMT_BUILTIN_CLZ
 | ||
|  |   if (!is_constant_evaluated()) { | ||
|  |     return do_count_digits(n); | ||
|  |   } | ||
|  | #endif
 | ||
|  |   return count_digits_fallback(n); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Int> constexpr auto digits10() noexcept -> int { | ||
|  |   return std::numeric_limits<Int>::digits10; | ||
|  | } | ||
|  | template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; } | ||
|  | template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; } | ||
|  | 
 | ||
|  | template <typename Char> struct thousands_sep_result { | ||
|  |   std::string grouping; | ||
|  |   Char thousands_sep; | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename Char> | ||
|  | FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>; | ||
|  | template <typename Char> | ||
|  | inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> { | ||
|  |   auto result = thousands_sep_impl<char>(loc); | ||
|  |   return {result.grouping, Char(result.thousands_sep)}; | ||
|  | } | ||
|  | template <> | ||
|  | inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> { | ||
|  |   return thousands_sep_impl<wchar_t>(loc); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char> | ||
|  | FMT_API auto decimal_point_impl(locale_ref loc) -> Char; | ||
|  | template <typename Char> inline auto decimal_point(locale_ref loc) -> Char { | ||
|  |   return Char(decimal_point_impl<char>(loc)); | ||
|  | } | ||
|  | template <> inline auto decimal_point(locale_ref loc) -> wchar_t { | ||
|  |   return decimal_point_impl<wchar_t>(loc); | ||
|  | } | ||
|  | 
 | ||
|  | // Compares two characters for equality.
 | ||
|  | template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool { | ||
|  |   return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]); | ||
|  | } | ||
|  | inline auto equal2(const char* lhs, const char* rhs) -> bool { | ||
|  |   return memcmp(lhs, rhs, 2) == 0; | ||
|  | } | ||
|  | 
 | ||
|  | // Copies two characters from src to dst.
 | ||
|  | template <typename Char> | ||
|  | FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) { | ||
|  |   if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) { | ||
|  |     memcpy(dst, src, 2); | ||
|  |     return; | ||
|  |   } | ||
|  |   *dst++ = static_cast<Char>(*src++); | ||
|  |   *dst = static_cast<Char>(*src); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Iterator> struct format_decimal_result { | ||
|  |   Iterator begin; | ||
|  |   Iterator end; | ||
|  | }; | ||
|  | 
 | ||
|  | // Formats a decimal unsigned integer value writing into out pointing to a
 | ||
|  | // buffer of specified size. The caller must ensure that the buffer is large
 | ||
|  | // enough.
 | ||
|  | template <typename Char, typename UInt> | ||
|  | FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size) | ||
|  |     -> format_decimal_result<Char*> { | ||
|  |   FMT_ASSERT(size >= count_digits(value), "invalid digit count"); | ||
|  |   out += size; | ||
|  |   Char* end = out; | ||
|  |   while (value >= 100) { | ||
|  |     // Integer division is slow so do it for a group of two digits instead
 | ||
|  |     // of for every digit. The idea comes from the talk by Alexandrescu
 | ||
|  |     // "Three Optimization Tips for C++". See speed-test for a comparison.
 | ||
|  |     out -= 2; | ||
|  |     copy2(out, digits2(static_cast<size_t>(value % 100))); | ||
|  |     value /= 100; | ||
|  |   } | ||
|  |   if (value < 10) { | ||
|  |     *--out = static_cast<Char>('0' + value); | ||
|  |     return {out, end}; | ||
|  |   } | ||
|  |   out -= 2; | ||
|  |   copy2(out, digits2(static_cast<size_t>(value))); | ||
|  |   return {out, end}; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename UInt, typename Iterator, | ||
|  |           FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)> | ||
|  | FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size) | ||
|  |     -> format_decimal_result<Iterator> { | ||
|  |   // Buffer is large enough to hold all digits (digits10 + 1).
 | ||
|  |   Char buffer[digits10<UInt>() + 1] = {}; | ||
|  |   auto end = format_decimal(buffer, value, size).end; | ||
|  |   return {out, detail::copy_str_noinline<Char>(buffer, end, out)}; | ||
|  | } | ||
|  | 
 | ||
|  | template <unsigned BASE_BITS, typename Char, typename UInt> | ||
|  | FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits, | ||
|  |                                bool upper = false) -> Char* { | ||
|  |   buffer += num_digits; | ||
|  |   Char* end = buffer; | ||
|  |   do { | ||
|  |     const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef"; | ||
|  |     unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1)); | ||
|  |     *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit) | ||
|  |                                                 : digits[digit]); | ||
|  |   } while ((value >>= BASE_BITS) != 0); | ||
|  |   return end; | ||
|  | } | ||
|  | 
 | ||
|  | template <unsigned BASE_BITS, typename Char, typename It, typename UInt> | ||
|  | FMT_CONSTEXPR inline auto format_uint(It out, UInt value, int num_digits, | ||
|  |                                       bool upper = false) -> It { | ||
|  |   if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) { | ||
|  |     format_uint<BASE_BITS>(ptr, value, num_digits, upper); | ||
|  |     return out; | ||
|  |   } | ||
|  |   // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
 | ||
|  |   char buffer[num_bits<UInt>() / BASE_BITS + 1] = {}; | ||
|  |   format_uint<BASE_BITS>(buffer, value, num_digits, upper); | ||
|  |   return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out); | ||
|  | } | ||
|  | 
 | ||
|  | // A converter from UTF-8 to UTF-16.
 | ||
|  | class utf8_to_utf16 { | ||
|  |  private: | ||
|  |   basic_memory_buffer<wchar_t> buffer_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   FMT_API explicit utf8_to_utf16(string_view s); | ||
|  |   operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; } | ||
|  |   auto size() const -> size_t { return buffer_.size() - 1; } | ||
|  |   auto c_str() const -> const wchar_t* { return &buffer_[0]; } | ||
|  |   auto str() const -> std::wstring { return {&buffer_[0], size()}; } | ||
|  | }; | ||
|  | 
 | ||
|  | enum class to_utf8_error_policy { abort, replace }; | ||
|  | 
 | ||
|  | // A converter from UTF-16/UTF-32 (host endian) to UTF-8.
 | ||
|  | template <typename WChar, typename Buffer = memory_buffer> class to_utf8 { | ||
|  |  private: | ||
|  |   Buffer buffer_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   to_utf8() {} | ||
|  |   explicit to_utf8(basic_string_view<WChar> s, | ||
|  |                    to_utf8_error_policy policy = to_utf8_error_policy::abort) { | ||
|  |     static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4, | ||
|  |                   "Expect utf16 or utf32"); | ||
|  |     if (!convert(s, policy)) | ||
|  |       FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16" | ||
|  |                                                       : "invalid utf32")); | ||
|  |   } | ||
|  |   operator string_view() const { return string_view(&buffer_[0], size()); } | ||
|  |   auto size() const -> size_t { return buffer_.size() - 1; } | ||
|  |   auto c_str() const -> const char* { return &buffer_[0]; } | ||
|  |   auto str() const -> std::string { return std::string(&buffer_[0], size()); } | ||
|  | 
 | ||
|  |   // Performs conversion returning a bool instead of throwing exception on
 | ||
|  |   // conversion error. This method may still throw in case of memory allocation
 | ||
|  |   // error.
 | ||
|  |   auto convert(basic_string_view<WChar> s, | ||
|  |                to_utf8_error_policy policy = to_utf8_error_policy::abort) | ||
|  |       -> bool { | ||
|  |     if (!convert(buffer_, s, policy)) return false; | ||
|  |     buffer_.push_back(0); | ||
|  |     return true; | ||
|  |   } | ||
|  |   static auto convert(Buffer& buf, basic_string_view<WChar> s, | ||
|  |                       to_utf8_error_policy policy = to_utf8_error_policy::abort) | ||
|  |       -> bool { | ||
|  |     for (auto p = s.begin(); p != s.end(); ++p) { | ||
|  |       uint32_t c = static_cast<uint32_t>(*p); | ||
|  |       if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) { | ||
|  |         // Handle a surrogate pair.
 | ||
|  |         ++p; | ||
|  |         if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) { | ||
|  |           if (policy == to_utf8_error_policy::abort) return false; | ||
|  |           buf.append(string_view("\xEF\xBF\xBD")); | ||
|  |           --p; | ||
|  |         } else { | ||
|  |           c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00; | ||
|  |         } | ||
|  |       } else if (c < 0x80) { | ||
|  |         buf.push_back(static_cast<char>(c)); | ||
|  |       } else if (c < 0x800) { | ||
|  |         buf.push_back(static_cast<char>(0xc0 | (c >> 6))); | ||
|  |         buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); | ||
|  |       } else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) { | ||
|  |         buf.push_back(static_cast<char>(0xe0 | (c >> 12))); | ||
|  |         buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6))); | ||
|  |         buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); | ||
|  |       } else if (c >= 0x10000 && c <= 0x10ffff) { | ||
|  |         buf.push_back(static_cast<char>(0xf0 | (c >> 18))); | ||
|  |         buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12))); | ||
|  |         buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6))); | ||
|  |         buf.push_back(static_cast<char>(0x80 | (c & 0x3f))); | ||
|  |       } else { | ||
|  |         return false; | ||
|  |       } | ||
|  |     } | ||
|  |     return true; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // Computes 128-bit result of multiplication of two 64-bit unsigned integers.
 | ||
|  | inline auto umul128(uint64_t x, uint64_t y) noexcept -> uint128_fallback { | ||
|  | #if FMT_USE_INT128
 | ||
|  |   auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y); | ||
|  |   return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)}; | ||
|  | #elif defined(_MSC_VER) && defined(_M_X64)
 | ||
|  |   auto hi = uint64_t(); | ||
|  |   auto lo = _umul128(x, y, &hi); | ||
|  |   return {hi, lo}; | ||
|  | #else
 | ||
|  |   const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>()); | ||
|  | 
 | ||
|  |   uint64_t a = x >> 32; | ||
|  |   uint64_t b = x & mask; | ||
|  |   uint64_t c = y >> 32; | ||
|  |   uint64_t d = y & mask; | ||
|  | 
 | ||
|  |   uint64_t ac = a * c; | ||
|  |   uint64_t bc = b * c; | ||
|  |   uint64_t ad = a * d; | ||
|  |   uint64_t bd = b * d; | ||
|  | 
 | ||
|  |   uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask); | ||
|  | 
 | ||
|  |   return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32), | ||
|  |           (intermediate << 32) + (bd & mask)}; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | namespace dragonbox { | ||
|  | // Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
 | ||
|  | // https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
 | ||
|  | inline auto floor_log10_pow2(int e) noexcept -> int { | ||
|  |   FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent"); | ||
|  |   static_assert((-1 >> 1) == -1, "right shift is not arithmetic"); | ||
|  |   return (e * 315653) >> 20; | ||
|  | } | ||
|  | 
 | ||
|  | inline auto floor_log2_pow10(int e) noexcept -> int { | ||
|  |   FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent"); | ||
|  |   return (e * 1741647) >> 19; | ||
|  | } | ||
|  | 
 | ||
|  | // Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
 | ||
|  | inline auto umul128_upper64(uint64_t x, uint64_t y) noexcept -> uint64_t { | ||
|  | #if FMT_USE_INT128
 | ||
|  |   auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y); | ||
|  |   return static_cast<uint64_t>(p >> 64); | ||
|  | #elif defined(_MSC_VER) && defined(_M_X64)
 | ||
|  |   return __umulh(x, y); | ||
|  | #else
 | ||
|  |   return umul128(x, y).high(); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | // Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
 | ||
|  | // 128-bit unsigned integer.
 | ||
|  | inline auto umul192_upper128(uint64_t x, uint128_fallback y) noexcept | ||
|  |     -> uint128_fallback { | ||
|  |   uint128_fallback r = umul128(x, y.high()); | ||
|  |   r += umul128_upper64(x, y.low()); | ||
|  |   return r; | ||
|  | } | ||
|  | 
 | ||
|  | FMT_API auto get_cached_power(int k) noexcept -> uint128_fallback; | ||
|  | 
 | ||
|  | // Type-specific information that Dragonbox uses.
 | ||
|  | template <typename T, typename Enable = void> struct float_info; | ||
|  | 
 | ||
|  | template <> struct float_info<float> { | ||
|  |   using carrier_uint = uint32_t; | ||
|  |   static const int exponent_bits = 8; | ||
|  |   static const int kappa = 1; | ||
|  |   static const int big_divisor = 100; | ||
|  |   static const int small_divisor = 10; | ||
|  |   static const int min_k = -31; | ||
|  |   static const int max_k = 46; | ||
|  |   static const int shorter_interval_tie_lower_threshold = -35; | ||
|  |   static const int shorter_interval_tie_upper_threshold = -35; | ||
|  | }; | ||
|  | 
 | ||
|  | template <> struct float_info<double> { | ||
|  |   using carrier_uint = uint64_t; | ||
|  |   static const int exponent_bits = 11; | ||
|  |   static const int kappa = 2; | ||
|  |   static const int big_divisor = 1000; | ||
|  |   static const int small_divisor = 100; | ||
|  |   static const int min_k = -292; | ||
|  |   static const int max_k = 341; | ||
|  |   static const int shorter_interval_tie_lower_threshold = -77; | ||
|  |   static const int shorter_interval_tie_upper_threshold = -77; | ||
|  | }; | ||
|  | 
 | ||
|  | // An 80- or 128-bit floating point number.
 | ||
|  | template <typename T> | ||
|  | struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 || | ||
|  |                                  std::numeric_limits<T>::digits == 113 || | ||
|  |                                  is_float128<T>::value>> { | ||
|  |   using carrier_uint = detail::uint128_t; | ||
|  |   static const int exponent_bits = 15; | ||
|  | }; | ||
|  | 
 | ||
|  | // A double-double floating point number.
 | ||
|  | template <typename T> | ||
|  | struct float_info<T, enable_if_t<is_double_double<T>::value>> { | ||
|  |   using carrier_uint = detail::uint128_t; | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T> struct decimal_fp { | ||
|  |   using significand_type = typename float_info<T>::carrier_uint; | ||
|  |   significand_type significand; | ||
|  |   int exponent; | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>; | ||
|  | }  // namespace dragonbox
 | ||
|  | 
 | ||
|  | // Returns true iff Float has the implicit bit which is not stored.
 | ||
|  | template <typename Float> constexpr auto has_implicit_bit() -> bool { | ||
|  |   // An 80-bit FP number has a 64-bit significand an no implicit bit.
 | ||
|  |   return std::numeric_limits<Float>::digits != 64; | ||
|  | } | ||
|  | 
 | ||
|  | // Returns the number of significand bits stored in Float. The implicit bit is
 | ||
|  | // not counted since it is not stored.
 | ||
|  | template <typename Float> constexpr auto num_significand_bits() -> int { | ||
|  |   // std::numeric_limits may not support __float128.
 | ||
|  |   return is_float128<Float>() ? 112 | ||
|  |                               : (std::numeric_limits<Float>::digits - | ||
|  |                                  (has_implicit_bit<Float>() ? 1 : 0)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Float> | ||
|  | constexpr auto exponent_mask() -> | ||
|  |     typename dragonbox::float_info<Float>::carrier_uint { | ||
|  |   using float_uint = typename dragonbox::float_info<Float>::carrier_uint; | ||
|  |   return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1) | ||
|  |          << num_significand_bits<Float>(); | ||
|  | } | ||
|  | template <typename Float> constexpr auto exponent_bias() -> int { | ||
|  |   // std::numeric_limits may not support __float128.
 | ||
|  |   return is_float128<Float>() ? 16383 | ||
|  |                               : std::numeric_limits<Float>::max_exponent - 1; | ||
|  | } | ||
|  | 
 | ||
|  | // Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
 | ||
|  | template <typename Char, typename It> | ||
|  | FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It { | ||
|  |   FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); | ||
|  |   if (exp < 0) { | ||
|  |     *it++ = static_cast<Char>('-'); | ||
|  |     exp = -exp; | ||
|  |   } else { | ||
|  |     *it++ = static_cast<Char>('+'); | ||
|  |   } | ||
|  |   if (exp >= 100) { | ||
|  |     const char* top = digits2(to_unsigned(exp / 100)); | ||
|  |     if (exp >= 1000) *it++ = static_cast<Char>(top[0]); | ||
|  |     *it++ = static_cast<Char>(top[1]); | ||
|  |     exp %= 100; | ||
|  |   } | ||
|  |   const char* d = digits2(to_unsigned(exp)); | ||
|  |   *it++ = static_cast<Char>(d[0]); | ||
|  |   *it++ = static_cast<Char>(d[1]); | ||
|  |   return it; | ||
|  | } | ||
|  | 
 | ||
|  | // A floating-point number f * pow(2, e) where F is an unsigned type.
 | ||
|  | template <typename F> struct basic_fp { | ||
|  |   F f; | ||
|  |   int e; | ||
|  | 
 | ||
|  |   static constexpr const int num_significand_bits = | ||
|  |       static_cast<int>(sizeof(F) * num_bits<unsigned char>()); | ||
|  | 
 | ||
|  |   constexpr basic_fp() : f(0), e(0) {} | ||
|  |   constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {} | ||
|  | 
 | ||
|  |   // Constructs fp from an IEEE754 floating-point number.
 | ||
|  |   template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); } | ||
|  | 
 | ||
|  |   // Assigns n to this and return true iff predecessor is closer than successor.
 | ||
|  |   template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)> | ||
|  |   FMT_CONSTEXPR auto assign(Float n) -> bool { | ||
|  |     static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP"); | ||
|  |     // Assume Float is in the format [sign][exponent][significand].
 | ||
|  |     using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint; | ||
|  |     const auto num_float_significand_bits = | ||
|  |         detail::num_significand_bits<Float>(); | ||
|  |     const auto implicit_bit = carrier_uint(1) << num_float_significand_bits; | ||
|  |     const auto significand_mask = implicit_bit - 1; | ||
|  |     auto u = bit_cast<carrier_uint>(n); | ||
|  |     f = static_cast<F>(u & significand_mask); | ||
|  |     auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >> | ||
|  |                                      num_float_significand_bits); | ||
|  |     // The predecessor is closer if n is a normalized power of 2 (f == 0)
 | ||
|  |     // other than the smallest normalized number (biased_e > 1).
 | ||
|  |     auto is_predecessor_closer = f == 0 && biased_e > 1; | ||
|  |     if (biased_e == 0) | ||
|  |       biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
 | ||
|  |     else if (has_implicit_bit<Float>()) | ||
|  |       f += static_cast<F>(implicit_bit); | ||
|  |     e = biased_e - exponent_bias<Float>() - num_float_significand_bits; | ||
|  |     if (!has_implicit_bit<Float>()) ++e; | ||
|  |     return is_predecessor_closer; | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)> | ||
|  |   FMT_CONSTEXPR auto assign(Float n) -> bool { | ||
|  |     static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP"); | ||
|  |     return assign(static_cast<double>(n)); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | using fp = basic_fp<unsigned long long>; | ||
|  | 
 | ||
|  | // Normalizes the value converted from double and multiplied by (1 << SHIFT).
 | ||
|  | template <int SHIFT = 0, typename F> | ||
|  | FMT_CONSTEXPR auto normalize(basic_fp<F> value) -> basic_fp<F> { | ||
|  |   // Handle subnormals.
 | ||
|  |   const auto implicit_bit = F(1) << num_significand_bits<double>(); | ||
|  |   const auto shifted_implicit_bit = implicit_bit << SHIFT; | ||
|  |   while ((value.f & shifted_implicit_bit) == 0) { | ||
|  |     value.f <<= 1; | ||
|  |     --value.e; | ||
|  |   } | ||
|  |   // Subtract 1 to account for hidden bit.
 | ||
|  |   const auto offset = basic_fp<F>::num_significand_bits - | ||
|  |                       num_significand_bits<double>() - SHIFT - 1; | ||
|  |   value.f <<= offset; | ||
|  |   value.e -= offset; | ||
|  |   return value; | ||
|  | } | ||
|  | 
 | ||
|  | // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
 | ||
|  | FMT_CONSTEXPR inline auto multiply(uint64_t lhs, uint64_t rhs) -> uint64_t { | ||
|  | #if FMT_USE_INT128
 | ||
|  |   auto product = static_cast<__uint128_t>(lhs) * rhs; | ||
|  |   auto f = static_cast<uint64_t>(product >> 64); | ||
|  |   return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f; | ||
|  | #else
 | ||
|  |   // Multiply 32-bit parts of significands.
 | ||
|  |   uint64_t mask = (1ULL << 32) - 1; | ||
|  |   uint64_t a = lhs >> 32, b = lhs & mask; | ||
|  |   uint64_t c = rhs >> 32, d = rhs & mask; | ||
|  |   uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; | ||
|  |   // Compute mid 64-bit of result and round.
 | ||
|  |   uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); | ||
|  |   return ac + (ad >> 32) + (bc >> 32) + (mid >> 32); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | FMT_CONSTEXPR inline auto operator*(fp x, fp y) -> fp { | ||
|  |   return {multiply(x.f, y.f), x.e + y.e + 64}; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, bool doublish = num_bits<T>() == num_bits<double>()> | ||
|  | using convert_float_result = | ||
|  |     conditional_t<std::is_same<T, float>::value || doublish, double, T>; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | constexpr auto convert_float(T value) -> convert_float_result<T> { | ||
|  |   return static_cast<convert_float_result<T>>(value); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt, typename Char> | ||
|  | FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n, | ||
|  |                                      const fill_t<Char>& fill) -> OutputIt { | ||
|  |   auto fill_size = fill.size(); | ||
|  |   if (fill_size == 1) return detail::fill_n(it, n, fill[0]); | ||
|  |   auto data = fill.data(); | ||
|  |   for (size_t i = 0; i < n; ++i) | ||
|  |     it = copy_str<Char>(data, data + fill_size, it); | ||
|  |   return it; | ||
|  | } | ||
|  | 
 | ||
|  | // Writes the output of f, padded according to format specifications in specs.
 | ||
|  | // size: output size in code units.
 | ||
|  | // width: output display width in (terminal) column positions.
 | ||
|  | template <align::type align = align::left, typename OutputIt, typename Char, | ||
|  |           typename F> | ||
|  | FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs<Char>& specs, | ||
|  |                                 size_t size, size_t width, F&& f) -> OutputIt { | ||
|  |   static_assert(align == align::left || align == align::right, ""); | ||
|  |   unsigned spec_width = to_unsigned(specs.width); | ||
|  |   size_t padding = spec_width > width ? spec_width - width : 0; | ||
|  |   // Shifts are encoded as string literals because static constexpr is not
 | ||
|  |   // supported in constexpr functions.
 | ||
|  |   auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01"; | ||
|  |   size_t left_padding = padding >> shifts[specs.align]; | ||
|  |   size_t right_padding = padding - left_padding; | ||
|  |   auto it = reserve(out, size + padding * specs.fill.size()); | ||
|  |   if (left_padding != 0) it = fill(it, left_padding, specs.fill); | ||
|  |   it = f(it); | ||
|  |   if (right_padding != 0) it = fill(it, right_padding, specs.fill); | ||
|  |   return base_iterator(out, it); | ||
|  | } | ||
|  | 
 | ||
|  | template <align::type align = align::left, typename OutputIt, typename Char, | ||
|  |           typename F> | ||
|  | constexpr auto write_padded(OutputIt out, const format_specs<Char>& specs, | ||
|  |                             size_t size, F&& f) -> OutputIt { | ||
|  |   return write_padded<align>(out, specs, size, size, f); | ||
|  | } | ||
|  | 
 | ||
|  | template <align::type align = align::left, typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes, | ||
|  |                                const format_specs<Char>& specs) -> OutputIt { | ||
|  |   return write_padded<align>( | ||
|  |       out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) { | ||
|  |         const char* data = bytes.data(); | ||
|  |         return copy_str<Char>(data, data + bytes.size(), it); | ||
|  |       }); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename UIntPtr> | ||
|  | auto write_ptr(OutputIt out, UIntPtr value, const format_specs<Char>* specs) | ||
|  |     -> OutputIt { | ||
|  |   int num_digits = count_digits<4>(value); | ||
|  |   auto size = to_unsigned(num_digits) + size_t(2); | ||
|  |   auto write = [=](reserve_iterator<OutputIt> it) { | ||
|  |     *it++ = static_cast<Char>('0'); | ||
|  |     *it++ = static_cast<Char>('x'); | ||
|  |     return format_uint<4, Char>(it, value, num_digits); | ||
|  |   }; | ||
|  |   return specs ? write_padded<align::right>(out, *specs, size, write) | ||
|  |                : base_iterator(out, write(reserve(out, size))); | ||
|  | } | ||
|  | 
 | ||
|  | // Returns true iff the code point cp is printable.
 | ||
|  | FMT_API auto is_printable(uint32_t cp) -> bool; | ||
|  | 
 | ||
|  | inline auto needs_escape(uint32_t cp) -> bool { | ||
|  |   return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' || | ||
|  |          !is_printable(cp); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char> struct find_escape_result { | ||
|  |   const Char* begin; | ||
|  |   const Char* end; | ||
|  |   uint32_t cp; | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename Char> | ||
|  | using make_unsigned_char = | ||
|  |     typename conditional_t<std::is_integral<Char>::value, | ||
|  |                            std::make_unsigned<Char>, | ||
|  |                            type_identity<uint32_t>>::type; | ||
|  | 
 | ||
|  | template <typename Char> | ||
|  | auto find_escape(const Char* begin, const Char* end) | ||
|  |     -> find_escape_result<Char> { | ||
|  |   for (; begin != end; ++begin) { | ||
|  |     uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin); | ||
|  |     if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue; | ||
|  |     if (needs_escape(cp)) return {begin, begin + 1, cp}; | ||
|  |   } | ||
|  |   return {begin, nullptr, 0}; | ||
|  | } | ||
|  | 
 | ||
|  | inline auto find_escape(const char* begin, const char* end) | ||
|  |     -> find_escape_result<char> { | ||
|  |   if (!is_utf8()) return find_escape<char>(begin, end); | ||
|  |   auto result = find_escape_result<char>{end, nullptr, 0}; | ||
|  |   for_each_codepoint(string_view(begin, to_unsigned(end - begin)), | ||
|  |                      [&](uint32_t cp, string_view sv) { | ||
|  |                        if (needs_escape(cp)) { | ||
|  |                          result = {sv.begin(), sv.end(), cp}; | ||
|  |                          return false; | ||
|  |                        } | ||
|  |                        return true; | ||
|  |                      }); | ||
|  |   return result; | ||
|  | } | ||
|  | 
 | ||
|  | #define FMT_STRING_IMPL(s, base, explicit)                                    \
 | ||
|  |   [] {                                                                        \ | ||
|  |     /* Use the hidden visibility as a workaround for a GCC bug (#1973). */    \ | ||
|  |     /* Use a macro-like name to avoid shadowing warnings. */                  \ | ||
|  |     struct FMT_VISIBILITY("hidden") FMT_COMPILE_STRING : base {               \ | ||
|  |       using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \ | ||
|  |       FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                                 \ | ||
|  |       operator fmt::basic_string_view<char_type>() const {                    \ | ||
|  |         return fmt::detail_exported::compile_string_to_view<char_type>(s);    \ | ||
|  |       }                                                                       \ | ||
|  |     };                                                                        \ | ||
|  |     return FMT_COMPILE_STRING();                                              \ | ||
|  |   }() | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   Constructs a compile-time format string from a string literal *s*. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |     // A compile-time error because 'd' is an invalid specifier for strings.
 | ||
|  |     std::string s = fmt::format(FMT_STRING("{:d}"), "foo"); | ||
|  |   \endrst | ||
|  |  */ | ||
|  | #define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, )
 | ||
|  | 
 | ||
|  | template <size_t width, typename Char, typename OutputIt> | ||
|  | auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt { | ||
|  |   *out++ = static_cast<Char>('\\'); | ||
|  |   *out++ = static_cast<Char>(prefix); | ||
|  |   Char buf[width]; | ||
|  |   fill_n(buf, width, static_cast<Char>('0')); | ||
|  |   format_uint<4>(buf, cp, width); | ||
|  |   return copy_str<Char>(buf, buf + width, out); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt, typename Char> | ||
|  | auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape) | ||
|  |     -> OutputIt { | ||
|  |   auto c = static_cast<Char>(escape.cp); | ||
|  |   switch (escape.cp) { | ||
|  |   case '\n': | ||
|  |     *out++ = static_cast<Char>('\\'); | ||
|  |     c = static_cast<Char>('n'); | ||
|  |     break; | ||
|  |   case '\r': | ||
|  |     *out++ = static_cast<Char>('\\'); | ||
|  |     c = static_cast<Char>('r'); | ||
|  |     break; | ||
|  |   case '\t': | ||
|  |     *out++ = static_cast<Char>('\\'); | ||
|  |     c = static_cast<Char>('t'); | ||
|  |     break; | ||
|  |   case '"': | ||
|  |     FMT_FALLTHROUGH; | ||
|  |   case '\'': | ||
|  |     FMT_FALLTHROUGH; | ||
|  |   case '\\': | ||
|  |     *out++ = static_cast<Char>('\\'); | ||
|  |     break; | ||
|  |   default: | ||
|  |     if (escape.cp < 0x100) { | ||
|  |       return write_codepoint<2, Char>(out, 'x', escape.cp); | ||
|  |     } | ||
|  |     if (escape.cp < 0x10000) { | ||
|  |       return write_codepoint<4, Char>(out, 'u', escape.cp); | ||
|  |     } | ||
|  |     if (escape.cp < 0x110000) { | ||
|  |       return write_codepoint<8, Char>(out, 'U', escape.cp); | ||
|  |     } | ||
|  |     for (Char escape_char : basic_string_view<Char>( | ||
|  |              escape.begin, to_unsigned(escape.end - escape.begin))) { | ||
|  |       out = write_codepoint<2, Char>(out, 'x', | ||
|  |                                      static_cast<uint32_t>(escape_char) & 0xFF); | ||
|  |     } | ||
|  |     return out; | ||
|  |   } | ||
|  |   *out++ = c; | ||
|  |   return out; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | auto write_escaped_string(OutputIt out, basic_string_view<Char> str) | ||
|  |     -> OutputIt { | ||
|  |   *out++ = static_cast<Char>('"'); | ||
|  |   auto begin = str.begin(), end = str.end(); | ||
|  |   do { | ||
|  |     auto escape = find_escape(begin, end); | ||
|  |     out = copy_str<Char>(begin, escape.begin, out); | ||
|  |     begin = escape.end; | ||
|  |     if (!begin) break; | ||
|  |     out = write_escaped_cp<OutputIt, Char>(out, escape); | ||
|  |   } while (begin != end); | ||
|  |   *out++ = static_cast<Char>('"'); | ||
|  |   return out; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | auto write_escaped_char(OutputIt out, Char v) -> OutputIt { | ||
|  |   Char v_array[1] = {v}; | ||
|  |   *out++ = static_cast<Char>('\''); | ||
|  |   if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) || | ||
|  |       v == static_cast<Char>('\'')) { | ||
|  |     out = write_escaped_cp(out, | ||
|  |                            find_escape_result<Char>{v_array, v_array + 1, | ||
|  |                                                     static_cast<uint32_t>(v)}); | ||
|  |   } else { | ||
|  |     *out++ = v; | ||
|  |   } | ||
|  |   *out++ = static_cast<Char>('\''); | ||
|  |   return out; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR auto write_char(OutputIt out, Char value, | ||
|  |                               const format_specs<Char>& specs) -> OutputIt { | ||
|  |   bool is_debug = specs.type == presentation_type::debug; | ||
|  |   return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) { | ||
|  |     if (is_debug) return write_escaped_char(it, value); | ||
|  |     *it++ = value; | ||
|  |     return it; | ||
|  |   }); | ||
|  | } | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, Char value, | ||
|  |                          const format_specs<Char>& specs, locale_ref loc = {}) | ||
|  |     -> OutputIt { | ||
|  |   // char is formatted as unsigned char for consistency across platforms.
 | ||
|  |   using unsigned_type = | ||
|  |       conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>; | ||
|  |   return check_char_specs(specs) | ||
|  |              ? write_char(out, value, specs) | ||
|  |              : write(out, static_cast<unsigned_type>(value), specs, loc); | ||
|  | } | ||
|  | 
 | ||
|  | // Data for write_int that doesn't depend on output iterator type. It is used to
 | ||
|  | // avoid template code bloat.
 | ||
|  | template <typename Char> struct write_int_data { | ||
|  |   size_t size; | ||
|  |   size_t padding; | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix, | ||
|  |                                const format_specs<Char>& specs) | ||
|  |       : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) { | ||
|  |     if (specs.align == align::numeric) { | ||
|  |       auto width = to_unsigned(specs.width); | ||
|  |       if (width > size) { | ||
|  |         padding = width - size; | ||
|  |         size = width; | ||
|  |       } | ||
|  |     } else if (specs.precision > num_digits) { | ||
|  |       size = (prefix >> 24) + to_unsigned(specs.precision); | ||
|  |       padding = to_unsigned(specs.precision - num_digits); | ||
|  |     } | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // Writes an integer in the format
 | ||
|  | //   <left-padding><prefix><numeric-padding><digits><right-padding>
 | ||
|  | // where <digits> are written by write_digits(it).
 | ||
|  | // prefix contains chars in three lower bytes and the size in the fourth byte.
 | ||
|  | template <typename OutputIt, typename Char, typename W> | ||
|  | FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits, | ||
|  |                                         unsigned prefix, | ||
|  |                                         const format_specs<Char>& specs, | ||
|  |                                         W write_digits) -> OutputIt { | ||
|  |   // Slightly faster check for specs.width == 0 && specs.precision == -1.
 | ||
|  |   if ((specs.width | (specs.precision + 1)) == 0) { | ||
|  |     auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24)); | ||
|  |     if (prefix != 0) { | ||
|  |       for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) | ||
|  |         *it++ = static_cast<Char>(p & 0xff); | ||
|  |     } | ||
|  |     return base_iterator(out, write_digits(it)); | ||
|  |   } | ||
|  |   auto data = write_int_data<Char>(num_digits, prefix, specs); | ||
|  |   return write_padded<align::right>( | ||
|  |       out, specs, data.size, [=](reserve_iterator<OutputIt> it) { | ||
|  |         for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) | ||
|  |           *it++ = static_cast<Char>(p & 0xff); | ||
|  |         it = detail::fill_n(it, data.padding, static_cast<Char>('0')); | ||
|  |         return write_digits(it); | ||
|  |       }); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char> class digit_grouping { | ||
|  |  private: | ||
|  |   std::string grouping_; | ||
|  |   std::basic_string<Char> thousands_sep_; | ||
|  | 
 | ||
|  |   struct next_state { | ||
|  |     std::string::const_iterator group; | ||
|  |     int pos; | ||
|  |   }; | ||
|  |   auto initial_state() const -> next_state { return {grouping_.begin(), 0}; } | ||
|  | 
 | ||
|  |   // Returns the next digit group separator position.
 | ||
|  |   auto next(next_state& state) const -> int { | ||
|  |     if (thousands_sep_.empty()) return max_value<int>(); | ||
|  |     if (state.group == grouping_.end()) return state.pos += grouping_.back(); | ||
|  |     if (*state.group <= 0 || *state.group == max_value<char>()) | ||
|  |       return max_value<int>(); | ||
|  |     state.pos += *state.group++; | ||
|  |     return state.pos; | ||
|  |   } | ||
|  | 
 | ||
|  |  public: | ||
|  |   explicit digit_grouping(locale_ref loc, bool localized = true) { | ||
|  |     if (!localized) return; | ||
|  |     auto sep = thousands_sep<Char>(loc); | ||
|  |     grouping_ = sep.grouping; | ||
|  |     if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep); | ||
|  |   } | ||
|  |   digit_grouping(std::string grouping, std::basic_string<Char> sep) | ||
|  |       : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {} | ||
|  | 
 | ||
|  |   auto has_separator() const -> bool { return !thousands_sep_.empty(); } | ||
|  | 
 | ||
|  |   auto count_separators(int num_digits) const -> int { | ||
|  |     int count = 0; | ||
|  |     auto state = initial_state(); | ||
|  |     while (num_digits > next(state)) ++count; | ||
|  |     return count; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Applies grouping to digits and write the output to out.
 | ||
|  |   template <typename Out, typename C> | ||
|  |   auto apply(Out out, basic_string_view<C> digits) const -> Out { | ||
|  |     auto num_digits = static_cast<int>(digits.size()); | ||
|  |     auto separators = basic_memory_buffer<int>(); | ||
|  |     separators.push_back(0); | ||
|  |     auto state = initial_state(); | ||
|  |     while (int i = next(state)) { | ||
|  |       if (i >= num_digits) break; | ||
|  |       separators.push_back(i); | ||
|  |     } | ||
|  |     for (int i = 0, sep_index = static_cast<int>(separators.size() - 1); | ||
|  |          i < num_digits; ++i) { | ||
|  |       if (num_digits - i == separators[sep_index]) { | ||
|  |         out = | ||
|  |             copy_str<Char>(thousands_sep_.data(), | ||
|  |                            thousands_sep_.data() + thousands_sep_.size(), out); | ||
|  |         --sep_index; | ||
|  |       } | ||
|  |       *out++ = static_cast<Char>(digits[to_unsigned(i)]); | ||
|  |     } | ||
|  |     return out; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) { | ||
|  |   prefix |= prefix != 0 ? value << 8 : value; | ||
|  |   prefix += (1u + (value > 0xff ? 1 : 0)) << 24; | ||
|  | } | ||
|  | 
 | ||
|  | // Writes a decimal integer with digit grouping.
 | ||
|  | template <typename OutputIt, typename UInt, typename Char> | ||
|  | auto write_int(OutputIt out, UInt value, unsigned prefix, | ||
|  |                const format_specs<Char>& specs, | ||
|  |                const digit_grouping<Char>& grouping) -> OutputIt { | ||
|  |   static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, ""); | ||
|  |   int num_digits = 0; | ||
|  |   auto buffer = memory_buffer(); | ||
|  |   switch (specs.type) { | ||
|  |   case presentation_type::none: | ||
|  |   case presentation_type::dec: { | ||
|  |     num_digits = count_digits(value); | ||
|  |     format_decimal<char>(appender(buffer), value, num_digits); | ||
|  |     break; | ||
|  |   } | ||
|  |   case presentation_type::hex_lower: | ||
|  |   case presentation_type::hex_upper: { | ||
|  |     bool upper = specs.type == presentation_type::hex_upper; | ||
|  |     if (specs.alt) | ||
|  |       prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0'); | ||
|  |     num_digits = count_digits<4>(value); | ||
|  |     format_uint<4, char>(appender(buffer), value, num_digits, upper); | ||
|  |     break; | ||
|  |   } | ||
|  |   case presentation_type::bin_lower: | ||
|  |   case presentation_type::bin_upper: { | ||
|  |     bool upper = specs.type == presentation_type::bin_upper; | ||
|  |     if (specs.alt) | ||
|  |       prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0'); | ||
|  |     num_digits = count_digits<1>(value); | ||
|  |     format_uint<1, char>(appender(buffer), value, num_digits); | ||
|  |     break; | ||
|  |   } | ||
|  |   case presentation_type::oct: { | ||
|  |     num_digits = count_digits<3>(value); | ||
|  |     // Octal prefix '0' is counted as a digit, so only add it if precision
 | ||
|  |     // is not greater than the number of digits.
 | ||
|  |     if (specs.alt && specs.precision <= num_digits && value != 0) | ||
|  |       prefix_append(prefix, '0'); | ||
|  |     format_uint<3, char>(appender(buffer), value, num_digits); | ||
|  |     break; | ||
|  |   } | ||
|  |   case presentation_type::chr: | ||
|  |     return write_char(out, static_cast<Char>(value), specs); | ||
|  |   default: | ||
|  |     throw_format_error("invalid format specifier"); | ||
|  |   } | ||
|  | 
 | ||
|  |   unsigned size = (prefix != 0 ? prefix >> 24 : 0) + to_unsigned(num_digits) + | ||
|  |                   to_unsigned(grouping.count_separators(num_digits)); | ||
|  |   return write_padded<align::right>( | ||
|  |       out, specs, size, size, [&](reserve_iterator<OutputIt> it) { | ||
|  |         for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) | ||
|  |           *it++ = static_cast<Char>(p & 0xff); | ||
|  |         return grouping.apply(it, string_view(buffer.data(), buffer.size())); | ||
|  |       }); | ||
|  | } | ||
|  | 
 | ||
|  | // Writes a localized value.
 | ||
|  | FMT_API auto write_loc(appender out, loc_value value, | ||
|  |                        const format_specs<>& specs, locale_ref loc) -> bool; | ||
|  | template <typename OutputIt, typename Char> | ||
|  | inline auto write_loc(OutputIt, loc_value, const format_specs<Char>&, | ||
|  |                       locale_ref) -> bool { | ||
|  |   return false; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename UInt> struct write_int_arg { | ||
|  |   UInt abs_value; | ||
|  |   unsigned prefix; | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign) | ||
|  |     -> write_int_arg<uint32_or_64_or_128_t<T>> { | ||
|  |   auto prefix = 0u; | ||
|  |   auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); | ||
|  |   if (is_negative(value)) { | ||
|  |     prefix = 0x01000000 | '-'; | ||
|  |     abs_value = 0 - abs_value; | ||
|  |   } else { | ||
|  |     constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+', | ||
|  |                                             0x1000000u | ' '}; | ||
|  |     prefix = prefixes[sign]; | ||
|  |   } | ||
|  |   return {abs_value, prefix}; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char = char> struct loc_writer { | ||
|  |   buffer_appender<Char> out; | ||
|  |   const format_specs<Char>& specs; | ||
|  |   std::basic_string<Char> sep; | ||
|  |   std::string grouping; | ||
|  |   std::basic_string<Char> decimal_point; | ||
|  | 
 | ||
|  |   template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> | ||
|  |   auto operator()(T value) -> bool { | ||
|  |     auto arg = make_write_int_arg(value, specs.sign); | ||
|  |     write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix, | ||
|  |               specs, digit_grouping<Char>(grouping, sep)); | ||
|  |     return true; | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> | ||
|  |   auto operator()(T) -> bool { | ||
|  |     return false; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T> | ||
|  | FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg, | ||
|  |                                         const format_specs<Char>& specs, | ||
|  |                                         locale_ref) -> OutputIt { | ||
|  |   static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, ""); | ||
|  |   auto abs_value = arg.abs_value; | ||
|  |   auto prefix = arg.prefix; | ||
|  |   switch (specs.type) { | ||
|  |   case presentation_type::none: | ||
|  |   case presentation_type::dec: { | ||
|  |     auto num_digits = count_digits(abs_value); | ||
|  |     return write_int( | ||
|  |         out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { | ||
|  |           return format_decimal<Char>(it, abs_value, num_digits).end; | ||
|  |         }); | ||
|  |   } | ||
|  |   case presentation_type::hex_lower: | ||
|  |   case presentation_type::hex_upper: { | ||
|  |     bool upper = specs.type == presentation_type::hex_upper; | ||
|  |     if (specs.alt) | ||
|  |       prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0'); | ||
|  |     int num_digits = count_digits<4>(abs_value); | ||
|  |     return write_int( | ||
|  |         out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) { | ||
|  |           return format_uint<4, Char>(it, abs_value, num_digits, upper); | ||
|  |         }); | ||
|  |   } | ||
|  |   case presentation_type::bin_lower: | ||
|  |   case presentation_type::bin_upper: { | ||
|  |     bool upper = specs.type == presentation_type::bin_upper; | ||
|  |     if (specs.alt) | ||
|  |       prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0'); | ||
|  |     int num_digits = count_digits<1>(abs_value); | ||
|  |     return write_int(out, num_digits, prefix, specs, | ||
|  |                      [=](reserve_iterator<OutputIt> it) { | ||
|  |                        return format_uint<1, Char>(it, abs_value, num_digits); | ||
|  |                      }); | ||
|  |   } | ||
|  |   case presentation_type::oct: { | ||
|  |     int num_digits = count_digits<3>(abs_value); | ||
|  |     // Octal prefix '0' is counted as a digit, so only add it if precision
 | ||
|  |     // is not greater than the number of digits.
 | ||
|  |     if (specs.alt && specs.precision <= num_digits && abs_value != 0) | ||
|  |       prefix_append(prefix, '0'); | ||
|  |     return write_int(out, num_digits, prefix, specs, | ||
|  |                      [=](reserve_iterator<OutputIt> it) { | ||
|  |                        return format_uint<3, Char>(it, abs_value, num_digits); | ||
|  |                      }); | ||
|  |   } | ||
|  |   case presentation_type::chr: | ||
|  |     return write_char(out, static_cast<Char>(abs_value), specs); | ||
|  |   default: | ||
|  |     throw_format_error("invalid format specifier"); | ||
|  |   } | ||
|  |   return out; | ||
|  | } | ||
|  | template <typename Char, typename OutputIt, typename T> | ||
|  | FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline( | ||
|  |     OutputIt out, write_int_arg<T> arg, const format_specs<Char>& specs, | ||
|  |     locale_ref loc) -> OutputIt { | ||
|  |   return write_int(out, arg, specs, loc); | ||
|  | } | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(is_integral<T>::value && | ||
|  |                         !std::is_same<T, bool>::value && | ||
|  |                         std::is_same<OutputIt, buffer_appender<Char>>::value)> | ||
|  | FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, | ||
|  |                                     const format_specs<Char>& specs, | ||
|  |                                     locale_ref loc) -> OutputIt { | ||
|  |   if (specs.localized && write_loc(out, value, specs, loc)) return out; | ||
|  |   return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs, | ||
|  |                             loc); | ||
|  | } | ||
|  | // An inlined version of write used in format string compilation.
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(is_integral<T>::value && | ||
|  |                         !std::is_same<T, bool>::value && | ||
|  |                         !std::is_same<OutputIt, buffer_appender<Char>>::value)> | ||
|  | FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value, | ||
|  |                                     const format_specs<Char>& specs, | ||
|  |                                     locale_ref loc) -> OutputIt { | ||
|  |   if (specs.localized && write_loc(out, value, specs, loc)) return out; | ||
|  |   return write_int(out, make_write_int_arg(value, specs.sign), specs, loc); | ||
|  | } | ||
|  | 
 | ||
|  | // An output iterator that counts the number of objects written to it and
 | ||
|  | // discards them.
 | ||
|  | class counting_iterator { | ||
|  |  private: | ||
|  |   size_t count_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   using iterator_category = std::output_iterator_tag; | ||
|  |   using difference_type = std::ptrdiff_t; | ||
|  |   using pointer = void; | ||
|  |   using reference = void; | ||
|  |   FMT_UNCHECKED_ITERATOR(counting_iterator); | ||
|  | 
 | ||
|  |   struct value_type { | ||
|  |     template <typename T> FMT_CONSTEXPR void operator=(const T&) {} | ||
|  |   }; | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR counting_iterator() : count_(0) {} | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR auto count() const -> size_t { return count_; } | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR auto operator++() -> counting_iterator& { | ||
|  |     ++count_; | ||
|  |     return *this; | ||
|  |   } | ||
|  |   FMT_CONSTEXPR auto operator++(int) -> counting_iterator { | ||
|  |     auto it = *this; | ||
|  |     ++*this; | ||
|  |     return it; | ||
|  |   } | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR friend auto operator+(counting_iterator it, difference_type n) | ||
|  |       -> counting_iterator { | ||
|  |     it.count_ += static_cast<size_t>(n); | ||
|  |     return it; | ||
|  |   } | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR auto operator*() const -> value_type { return {}; } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s, | ||
|  |                          const format_specs<Char>& specs) -> OutputIt { | ||
|  |   auto data = s.data(); | ||
|  |   auto size = s.size(); | ||
|  |   if (specs.precision >= 0 && to_unsigned(specs.precision) < size) | ||
|  |     size = code_point_index(s, to_unsigned(specs.precision)); | ||
|  |   bool is_debug = specs.type == presentation_type::debug; | ||
|  |   size_t width = 0; | ||
|  |   if (specs.width != 0) { | ||
|  |     if (is_debug) | ||
|  |       width = write_escaped_string(counting_iterator{}, s).count(); | ||
|  |     else | ||
|  |       width = compute_width(basic_string_view<Char>(data, size)); | ||
|  |   } | ||
|  |   return write_padded(out, specs, size, width, | ||
|  |                       [=](reserve_iterator<OutputIt> it) { | ||
|  |                         if (is_debug) return write_escaped_string(it, s); | ||
|  |                         return copy_str<Char>(data, data + size, it); | ||
|  |                       }); | ||
|  | } | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, | ||
|  |                          basic_string_view<type_identity_t<Char>> s, | ||
|  |                          const format_specs<Char>& specs, locale_ref) | ||
|  |     -> OutputIt { | ||
|  |   return write(out, s, specs); | ||
|  | } | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, const Char* s, | ||
|  |                          const format_specs<Char>& specs, locale_ref) | ||
|  |     -> OutputIt { | ||
|  |   if (specs.type == presentation_type::pointer) | ||
|  |     return write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs); | ||
|  |   if (!s) throw_format_error("string pointer is null"); | ||
|  |   return write(out, basic_string_view<Char>(s), specs, {}); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(is_integral<T>::value && | ||
|  |                         !std::is_same<T, bool>::value && | ||
|  |                         !std::is_same<T, Char>::value)> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { | ||
|  |   auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value); | ||
|  |   bool negative = is_negative(value); | ||
|  |   // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
 | ||
|  |   if (negative) abs_value = ~abs_value + 1; | ||
|  |   int num_digits = count_digits(abs_value); | ||
|  |   auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits); | ||
|  |   auto it = reserve(out, size); | ||
|  |   if (auto ptr = to_pointer<Char>(it, size)) { | ||
|  |     if (negative) *ptr++ = static_cast<Char>('-'); | ||
|  |     format_decimal<Char>(ptr, abs_value, num_digits); | ||
|  |     return out; | ||
|  |   } | ||
|  |   if (negative) *it++ = static_cast<Char>('-'); | ||
|  |   it = format_decimal<Char>(it, abs_value, num_digits).end; | ||
|  |   return base_iterator(out, it); | ||
|  | } | ||
|  | 
 | ||
|  | // DEPRECATED!
 | ||
|  | template <typename Char> | ||
|  | FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end, | ||
|  |                                format_specs<Char>& specs) -> const Char* { | ||
|  |   FMT_ASSERT(begin != end, ""); | ||
|  |   auto align = align::none; | ||
|  |   auto p = begin + code_point_length(begin); | ||
|  |   if (end - p <= 0) p = begin; | ||
|  |   for (;;) { | ||
|  |     switch (to_ascii(*p)) { | ||
|  |     case '<': | ||
|  |       align = align::left; | ||
|  |       break; | ||
|  |     case '>': | ||
|  |       align = align::right; | ||
|  |       break; | ||
|  |     case '^': | ||
|  |       align = align::center; | ||
|  |       break; | ||
|  |     } | ||
|  |     if (align != align::none) { | ||
|  |       if (p != begin) { | ||
|  |         auto c = *begin; | ||
|  |         if (c == '}') return begin; | ||
|  |         if (c == '{') { | ||
|  |           throw_format_error("invalid fill character '{'"); | ||
|  |           return begin; | ||
|  |         } | ||
|  |         specs.fill = {begin, to_unsigned(p - begin)}; | ||
|  |         begin = p + 1; | ||
|  |       } else { | ||
|  |         ++begin; | ||
|  |       } | ||
|  |       break; | ||
|  |     } else if (p == begin) { | ||
|  |       break; | ||
|  |     } | ||
|  |     p = begin; | ||
|  |   } | ||
|  |   specs.align = align; | ||
|  |   return begin; | ||
|  | } | ||
|  | 
 | ||
|  | // A floating-point presentation format.
 | ||
|  | enum class float_format : unsigned char { | ||
|  |   general,  // General: exponent notation or fixed point based on magnitude.
 | ||
|  |   exp,      // Exponent notation with the default precision of 6, e.g. 1.2e-3.
 | ||
|  |   fixed,    // Fixed point with the default precision of 6, e.g. 0.0012.
 | ||
|  |   hex | ||
|  | }; | ||
|  | 
 | ||
|  | struct float_specs { | ||
|  |   int precision; | ||
|  |   float_format format : 8; | ||
|  |   sign_t sign : 8; | ||
|  |   bool upper : 1; | ||
|  |   bool locale : 1; | ||
|  |   bool binary32 : 1; | ||
|  |   bool showpoint : 1; | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename Char> | ||
|  | FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs) | ||
|  |     -> float_specs { | ||
|  |   auto result = float_specs(); | ||
|  |   result.showpoint = specs.alt; | ||
|  |   result.locale = specs.localized; | ||
|  |   switch (specs.type) { | ||
|  |   case presentation_type::none: | ||
|  |     result.format = float_format::general; | ||
|  |     break; | ||
|  |   case presentation_type::general_upper: | ||
|  |     result.upper = true; | ||
|  |     FMT_FALLTHROUGH; | ||
|  |   case presentation_type::general_lower: | ||
|  |     result.format = float_format::general; | ||
|  |     break; | ||
|  |   case presentation_type::exp_upper: | ||
|  |     result.upper = true; | ||
|  |     FMT_FALLTHROUGH; | ||
|  |   case presentation_type::exp_lower: | ||
|  |     result.format = float_format::exp; | ||
|  |     result.showpoint |= specs.precision != 0; | ||
|  |     break; | ||
|  |   case presentation_type::fixed_upper: | ||
|  |     result.upper = true; | ||
|  |     FMT_FALLTHROUGH; | ||
|  |   case presentation_type::fixed_lower: | ||
|  |     result.format = float_format::fixed; | ||
|  |     result.showpoint |= specs.precision != 0; | ||
|  |     break; | ||
|  |   case presentation_type::hexfloat_upper: | ||
|  |     result.upper = true; | ||
|  |     FMT_FALLTHROUGH; | ||
|  |   case presentation_type::hexfloat_lower: | ||
|  |     result.format = float_format::hex; | ||
|  |     break; | ||
|  |   default: | ||
|  |     throw_format_error("invalid format specifier"); | ||
|  |     break; | ||
|  |   } | ||
|  |   return result; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan, | ||
|  |                                      format_specs<Char> specs, | ||
|  |                                      const float_specs& fspecs) -> OutputIt { | ||
|  |   auto str = | ||
|  |       isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf"); | ||
|  |   constexpr size_t str_size = 3; | ||
|  |   auto sign = fspecs.sign; | ||
|  |   auto size = str_size + (sign ? 1 : 0); | ||
|  |   // Replace '0'-padding with space for non-finite values.
 | ||
|  |   const bool is_zero_fill = | ||
|  |       specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0'); | ||
|  |   if (is_zero_fill) specs.fill[0] = static_cast<Char>(' '); | ||
|  |   return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) { | ||
|  |     if (sign) *it++ = detail::sign<Char>(sign); | ||
|  |     return copy_str<Char>(str, str + str_size, it); | ||
|  |   }); | ||
|  | } | ||
|  | 
 | ||
|  | // A decimal floating-point number significand * pow(10, exp).
 | ||
|  | struct big_decimal_fp { | ||
|  |   const char* significand; | ||
|  |   int significand_size; | ||
|  |   int exponent; | ||
|  | }; | ||
|  | 
 | ||
|  | constexpr auto get_significand_size(const big_decimal_fp& f) -> int { | ||
|  |   return f.significand_size; | ||
|  | } | ||
|  | template <typename T> | ||
|  | inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int { | ||
|  |   return count_digits(f.significand); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | constexpr auto write_significand(OutputIt out, const char* significand, | ||
|  |                                  int significand_size) -> OutputIt { | ||
|  |   return copy_str<Char>(significand, significand + significand_size, out); | ||
|  | } | ||
|  | template <typename Char, typename OutputIt, typename UInt> | ||
|  | inline auto write_significand(OutputIt out, UInt significand, | ||
|  |                               int significand_size) -> OutputIt { | ||
|  |   return format_decimal<Char>(out, significand, significand_size).end; | ||
|  | } | ||
|  | template <typename Char, typename OutputIt, typename T, typename Grouping> | ||
|  | FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, | ||
|  |                                        int significand_size, int exponent, | ||
|  |                                        const Grouping& grouping) -> OutputIt { | ||
|  |   if (!grouping.has_separator()) { | ||
|  |     out = write_significand<Char>(out, significand, significand_size); | ||
|  |     return detail::fill_n(out, exponent, static_cast<Char>('0')); | ||
|  |   } | ||
|  |   auto buffer = memory_buffer(); | ||
|  |   write_significand<char>(appender(buffer), significand, significand_size); | ||
|  |   detail::fill_n(appender(buffer), exponent, '0'); | ||
|  |   return grouping.apply(out, string_view(buffer.data(), buffer.size())); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename UInt, | ||
|  |           FMT_ENABLE_IF(std::is_integral<UInt>::value)> | ||
|  | inline auto write_significand(Char* out, UInt significand, int significand_size, | ||
|  |                               int integral_size, Char decimal_point) -> Char* { | ||
|  |   if (!decimal_point) | ||
|  |     return format_decimal(out, significand, significand_size).end; | ||
|  |   out += significand_size + 1; | ||
|  |   Char* end = out; | ||
|  |   int floating_size = significand_size - integral_size; | ||
|  |   for (int i = floating_size / 2; i > 0; --i) { | ||
|  |     out -= 2; | ||
|  |     copy2(out, digits2(static_cast<std::size_t>(significand % 100))); | ||
|  |     significand /= 100; | ||
|  |   } | ||
|  |   if (floating_size % 2 != 0) { | ||
|  |     *--out = static_cast<Char>('0' + significand % 10); | ||
|  |     significand /= 10; | ||
|  |   } | ||
|  |   *--out = decimal_point; | ||
|  |   format_decimal(out - integral_size, significand, integral_size); | ||
|  |   return end; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt, typename UInt, typename Char, | ||
|  |           FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)> | ||
|  | inline auto write_significand(OutputIt out, UInt significand, | ||
|  |                               int significand_size, int integral_size, | ||
|  |                               Char decimal_point) -> OutputIt { | ||
|  |   // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
 | ||
|  |   Char buffer[digits10<UInt>() + 2]; | ||
|  |   auto end = write_significand(buffer, significand, significand_size, | ||
|  |                                integral_size, decimal_point); | ||
|  |   return detail::copy_str_noinline<Char>(buffer, end, out); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt, typename Char> | ||
|  | FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand, | ||
|  |                                      int significand_size, int integral_size, | ||
|  |                                      Char decimal_point) -> OutputIt { | ||
|  |   out = detail::copy_str_noinline<Char>(significand, | ||
|  |                                         significand + integral_size, out); | ||
|  |   if (!decimal_point) return out; | ||
|  |   *out++ = decimal_point; | ||
|  |   return detail::copy_str_noinline<Char>(significand + integral_size, | ||
|  |                                          significand + significand_size, out); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt, typename Char, typename T, typename Grouping> | ||
|  | FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand, | ||
|  |                                        int significand_size, int integral_size, | ||
|  |                                        Char decimal_point, | ||
|  |                                        const Grouping& grouping) -> OutputIt { | ||
|  |   if (!grouping.has_separator()) { | ||
|  |     return write_significand(out, significand, significand_size, integral_size, | ||
|  |                              decimal_point); | ||
|  |   } | ||
|  |   auto buffer = basic_memory_buffer<Char>(); | ||
|  |   write_significand(buffer_appender<Char>(buffer), significand, | ||
|  |                     significand_size, integral_size, decimal_point); | ||
|  |   grouping.apply( | ||
|  |       out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size))); | ||
|  |   return detail::copy_str_noinline<Char>(buffer.data() + integral_size, | ||
|  |                                          buffer.end(), out); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt, typename DecimalFP, typename Char, | ||
|  |           typename Grouping = digit_grouping<Char>> | ||
|  | FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f, | ||
|  |                                     const format_specs<Char>& specs, | ||
|  |                                     float_specs fspecs, locale_ref loc) | ||
|  |     -> OutputIt { | ||
|  |   auto significand = f.significand; | ||
|  |   int significand_size = get_significand_size(f); | ||
|  |   const Char zero = static_cast<Char>('0'); | ||
|  |   auto sign = fspecs.sign; | ||
|  |   size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); | ||
|  |   using iterator = reserve_iterator<OutputIt>; | ||
|  | 
 | ||
|  |   Char decimal_point = | ||
|  |       fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.'); | ||
|  | 
 | ||
|  |   int output_exp = f.exponent + significand_size - 1; | ||
|  |   auto use_exp_format = [=]() { | ||
|  |     if (fspecs.format == float_format::exp) return true; | ||
|  |     if (fspecs.format != float_format::general) return false; | ||
|  |     // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
 | ||
|  |     // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
 | ||
|  |     const int exp_lower = -4, exp_upper = 16; | ||
|  |     return output_exp < exp_lower || | ||
|  |            output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); | ||
|  |   }; | ||
|  |   if (use_exp_format()) { | ||
|  |     int num_zeros = 0; | ||
|  |     if (fspecs.showpoint) { | ||
|  |       num_zeros = fspecs.precision - significand_size; | ||
|  |       if (num_zeros < 0) num_zeros = 0; | ||
|  |       size += to_unsigned(num_zeros); | ||
|  |     } else if (significand_size == 1) { | ||
|  |       decimal_point = Char(); | ||
|  |     } | ||
|  |     auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; | ||
|  |     int exp_digits = 2; | ||
|  |     if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; | ||
|  | 
 | ||
|  |     size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); | ||
|  |     char exp_char = fspecs.upper ? 'E' : 'e'; | ||
|  |     auto write = [=](iterator it) { | ||
|  |       if (sign) *it++ = detail::sign<Char>(sign); | ||
|  |       // Insert a decimal point after the first digit and add an exponent.
 | ||
|  |       it = write_significand(it, significand, significand_size, 1, | ||
|  |                              decimal_point); | ||
|  |       if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); | ||
|  |       *it++ = static_cast<Char>(exp_char); | ||
|  |       return write_exponent<Char>(output_exp, it); | ||
|  |     }; | ||
|  |     return specs.width > 0 ? write_padded<align::right>(out, specs, size, write) | ||
|  |                            : base_iterator(out, write(reserve(out, size))); | ||
|  |   } | ||
|  | 
 | ||
|  |   int exp = f.exponent + significand_size; | ||
|  |   if (f.exponent >= 0) { | ||
|  |     // 1234e5 -> 123400000[.0+]
 | ||
|  |     size += to_unsigned(f.exponent); | ||
|  |     int num_zeros = fspecs.precision - exp; | ||
|  |     abort_fuzzing_if(num_zeros > 5000); | ||
|  |     if (fspecs.showpoint) { | ||
|  |       ++size; | ||
|  |       if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 0; | ||
|  |       if (num_zeros > 0) size += to_unsigned(num_zeros); | ||
|  |     } | ||
|  |     auto grouping = Grouping(loc, fspecs.locale); | ||
|  |     size += to_unsigned(grouping.count_separators(exp)); | ||
|  |     return write_padded<align::right>(out, specs, size, [&](iterator it) { | ||
|  |       if (sign) *it++ = detail::sign<Char>(sign); | ||
|  |       it = write_significand<Char>(it, significand, significand_size, | ||
|  |                                    f.exponent, grouping); | ||
|  |       if (!fspecs.showpoint) return it; | ||
|  |       *it++ = decimal_point; | ||
|  |       return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; | ||
|  |     }); | ||
|  |   } else if (exp > 0) { | ||
|  |     // 1234e-2 -> 12.34[0+]
 | ||
|  |     int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; | ||
|  |     size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); | ||
|  |     auto grouping = Grouping(loc, fspecs.locale); | ||
|  |     size += to_unsigned(grouping.count_separators(exp)); | ||
|  |     return write_padded<align::right>(out, specs, size, [&](iterator it) { | ||
|  |       if (sign) *it++ = detail::sign<Char>(sign); | ||
|  |       it = write_significand(it, significand, significand_size, exp, | ||
|  |                              decimal_point, grouping); | ||
|  |       return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; | ||
|  |     }); | ||
|  |   } | ||
|  |   // 1234e-6 -> 0.001234
 | ||
|  |   int num_zeros = -exp; | ||
|  |   if (significand_size == 0 && fspecs.precision >= 0 && | ||
|  |       fspecs.precision < num_zeros) { | ||
|  |     num_zeros = fspecs.precision; | ||
|  |   } | ||
|  |   bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; | ||
|  |   size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); | ||
|  |   return write_padded<align::right>(out, specs, size, [&](iterator it) { | ||
|  |     if (sign) *it++ = detail::sign<Char>(sign); | ||
|  |     *it++ = zero; | ||
|  |     if (!pointy) return it; | ||
|  |     *it++ = decimal_point; | ||
|  |     it = detail::fill_n(it, num_zeros, zero); | ||
|  |     return write_significand<Char>(it, significand, significand_size); | ||
|  |   }); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char> class fallback_digit_grouping { | ||
|  |  public: | ||
|  |   constexpr fallback_digit_grouping(locale_ref, bool) {} | ||
|  | 
 | ||
|  |   constexpr auto has_separator() const -> bool { return false; } | ||
|  | 
 | ||
|  |   constexpr auto count_separators(int) const -> int { return 0; } | ||
|  | 
 | ||
|  |   template <typename Out, typename C> | ||
|  |   constexpr auto apply(Out out, basic_string_view<C>) const -> Out { | ||
|  |     return out; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename OutputIt, typename DecimalFP, typename Char> | ||
|  | FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f, | ||
|  |                                  const format_specs<Char>& specs, | ||
|  |                                  float_specs fspecs, locale_ref loc) | ||
|  |     -> OutputIt { | ||
|  |   if (is_constant_evaluated()) { | ||
|  |     return do_write_float<OutputIt, DecimalFP, Char, | ||
|  |                           fallback_digit_grouping<Char>>(out, f, specs, fspecs, | ||
|  |                                                          loc); | ||
|  |   } else { | ||
|  |     return do_write_float(out, f, specs, fspecs, loc); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> constexpr auto isnan(T value) -> bool { | ||
|  |   return !(value >= value);  // std::isnan doesn't support __float128.
 | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, typename Enable = void> | ||
|  | struct has_isfinite : std::false_type {}; | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>> | ||
|  |     : std::true_type {}; | ||
|  | 
 | ||
|  | template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&& | ||
|  |                                         has_isfinite<T>::value)> | ||
|  | FMT_CONSTEXPR20 auto isfinite(T value) -> bool { | ||
|  |   constexpr T inf = T(std::numeric_limits<double>::infinity()); | ||
|  |   if (is_constant_evaluated()) | ||
|  |     return !detail::isnan(value) && value < inf && value > -inf; | ||
|  |   return std::isfinite(value); | ||
|  | } | ||
|  | template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)> | ||
|  | FMT_CONSTEXPR auto isfinite(T value) -> bool { | ||
|  |   T inf = T(std::numeric_limits<double>::infinity()); | ||
|  |   // std::isfinite doesn't support __float128.
 | ||
|  |   return !detail::isnan(value) && value < inf && value > -inf; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)> | ||
|  | FMT_INLINE FMT_CONSTEXPR bool signbit(T value) { | ||
|  |   if (is_constant_evaluated()) { | ||
|  | #ifdef __cpp_if_constexpr
 | ||
|  |     if constexpr (std::numeric_limits<double>::is_iec559) { | ||
|  |       auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value)); | ||
|  |       return (bits >> (num_bits<uint64_t>() - 1)) != 0; | ||
|  |     } | ||
|  | #endif
 | ||
|  |   } | ||
|  |   return std::signbit(static_cast<double>(value)); | ||
|  | } | ||
|  | 
 | ||
|  | inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) { | ||
|  |   // Adjust fixed precision by exponent because it is relative to decimal
 | ||
|  |   // point.
 | ||
|  |   if (exp10 > 0 && precision > max_value<int>() - exp10) | ||
|  |     FMT_THROW(format_error("number is too big")); | ||
|  |   precision += exp10; | ||
|  | } | ||
|  | 
 | ||
|  | class bigint { | ||
|  |  private: | ||
|  |   // A bigint is stored as an array of bigits (big digits), with bigit at index
 | ||
|  |   // 0 being the least significant one.
 | ||
|  |   using bigit = uint32_t; | ||
|  |   using double_bigit = uint64_t; | ||
|  |   enum { bigits_capacity = 32 }; | ||
|  |   basic_memory_buffer<bigit, bigits_capacity> bigits_; | ||
|  |   int exp_; | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 auto operator[](int index) const -> bigit { | ||
|  |     return bigits_[to_unsigned(index)]; | ||
|  |   } | ||
|  |   FMT_CONSTEXPR20 auto operator[](int index) -> bigit& { | ||
|  |     return bigits_[to_unsigned(index)]; | ||
|  |   } | ||
|  | 
 | ||
|  |   static constexpr const int bigit_bits = num_bits<bigit>(); | ||
|  | 
 | ||
|  |   friend struct formatter<bigint>; | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) { | ||
|  |     auto result = static_cast<double_bigit>((*this)[index]) - other - borrow; | ||
|  |     (*this)[index] = static_cast<bigit>(result); | ||
|  |     borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1)); | ||
|  |   } | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 void remove_leading_zeros() { | ||
|  |     int num_bigits = static_cast<int>(bigits_.size()) - 1; | ||
|  |     while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits; | ||
|  |     bigits_.resize(to_unsigned(num_bigits + 1)); | ||
|  |   } | ||
|  | 
 | ||
|  |   // Computes *this -= other assuming aligned bigints and *this >= other.
 | ||
|  |   FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) { | ||
|  |     FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints"); | ||
|  |     FMT_ASSERT(compare(*this, other) >= 0, ""); | ||
|  |     bigit borrow = 0; | ||
|  |     int i = other.exp_ - exp_; | ||
|  |     for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j) | ||
|  |       subtract_bigits(i, other.bigits_[j], borrow); | ||
|  |     while (borrow > 0) subtract_bigits(i, 0, borrow); | ||
|  |     remove_leading_zeros(); | ||
|  |   } | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 void multiply(uint32_t value) { | ||
|  |     const double_bigit wide_value = value; | ||
|  |     bigit carry = 0; | ||
|  |     for (size_t i = 0, n = bigits_.size(); i < n; ++i) { | ||
|  |       double_bigit result = bigits_[i] * wide_value + carry; | ||
|  |       bigits_[i] = static_cast<bigit>(result); | ||
|  |       carry = static_cast<bigit>(result >> bigit_bits); | ||
|  |     } | ||
|  |     if (carry != 0) bigits_.push_back(carry); | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value || | ||
|  |                                          std::is_same<UInt, uint128_t>::value)> | ||
|  |   FMT_CONSTEXPR20 void multiply(UInt value) { | ||
|  |     using half_uint = | ||
|  |         conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>; | ||
|  |     const int shift = num_bits<half_uint>() - bigit_bits; | ||
|  |     const UInt lower = static_cast<half_uint>(value); | ||
|  |     const UInt upper = value >> num_bits<half_uint>(); | ||
|  |     UInt carry = 0; | ||
|  |     for (size_t i = 0, n = bigits_.size(); i < n; ++i) { | ||
|  |       UInt result = lower * bigits_[i] + static_cast<bigit>(carry); | ||
|  |       carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) + | ||
|  |               (carry >> bigit_bits); | ||
|  |       bigits_[i] = static_cast<bigit>(result); | ||
|  |     } | ||
|  |     while (carry != 0) { | ||
|  |       bigits_.push_back(static_cast<bigit>(carry)); | ||
|  |       carry >>= bigit_bits; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value || | ||
|  |                                          std::is_same<UInt, uint128_t>::value)> | ||
|  |   FMT_CONSTEXPR20 void assign(UInt n) { | ||
|  |     size_t num_bigits = 0; | ||
|  |     do { | ||
|  |       bigits_[num_bigits++] = static_cast<bigit>(n); | ||
|  |       n >>= bigit_bits; | ||
|  |     } while (n != 0); | ||
|  |     bigits_.resize(num_bigits); | ||
|  |     exp_ = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |  public: | ||
|  |   FMT_CONSTEXPR20 bigint() : exp_(0) {} | ||
|  |   explicit bigint(uint64_t n) { assign(n); } | ||
|  | 
 | ||
|  |   bigint(const bigint&) = delete; | ||
|  |   void operator=(const bigint&) = delete; | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 void assign(const bigint& other) { | ||
|  |     auto size = other.bigits_.size(); | ||
|  |     bigits_.resize(size); | ||
|  |     auto data = other.bigits_.data(); | ||
|  |     copy_str<bigit>(data, data + size, bigits_.data()); | ||
|  |     exp_ = other.exp_; | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) { | ||
|  |     FMT_ASSERT(n > 0, ""); | ||
|  |     assign(uint64_or_128_t<Int>(n)); | ||
|  |   } | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 auto num_bigits() const -> int { | ||
|  |     return static_cast<int>(bigits_.size()) + exp_; | ||
|  |   } | ||
|  | 
 | ||
|  |   FMT_NOINLINE FMT_CONSTEXPR20 auto operator<<=(int shift) -> bigint& { | ||
|  |     FMT_ASSERT(shift >= 0, ""); | ||
|  |     exp_ += shift / bigit_bits; | ||
|  |     shift %= bigit_bits; | ||
|  |     if (shift == 0) return *this; | ||
|  |     bigit carry = 0; | ||
|  |     for (size_t i = 0, n = bigits_.size(); i < n; ++i) { | ||
|  |       bigit c = bigits_[i] >> (bigit_bits - shift); | ||
|  |       bigits_[i] = (bigits_[i] << shift) + carry; | ||
|  |       carry = c; | ||
|  |     } | ||
|  |     if (carry != 0) bigits_.push_back(carry); | ||
|  |     return *this; | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename Int> | ||
|  |   FMT_CONSTEXPR20 auto operator*=(Int value) -> bigint& { | ||
|  |     FMT_ASSERT(value > 0, ""); | ||
|  |     multiply(uint32_or_64_or_128_t<Int>(value)); | ||
|  |     return *this; | ||
|  |   } | ||
|  | 
 | ||
|  |   friend FMT_CONSTEXPR20 auto compare(const bigint& lhs, const bigint& rhs) | ||
|  |       -> int { | ||
|  |     int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits(); | ||
|  |     if (num_lhs_bigits != num_rhs_bigits) | ||
|  |       return num_lhs_bigits > num_rhs_bigits ? 1 : -1; | ||
|  |     int i = static_cast<int>(lhs.bigits_.size()) - 1; | ||
|  |     int j = static_cast<int>(rhs.bigits_.size()) - 1; | ||
|  |     int end = i - j; | ||
|  |     if (end < 0) end = 0; | ||
|  |     for (; i >= end; --i, --j) { | ||
|  |       bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j]; | ||
|  |       if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1; | ||
|  |     } | ||
|  |     if (i != j) return i > j ? 1 : -1; | ||
|  |     return 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Returns compare(lhs1 + lhs2, rhs).
 | ||
|  |   friend FMT_CONSTEXPR20 auto add_compare(const bigint& lhs1, | ||
|  |                                           const bigint& lhs2, const bigint& rhs) | ||
|  |       -> int { | ||
|  |     auto minimum = [](int a, int b) { return a < b ? a : b; }; | ||
|  |     auto maximum = [](int a, int b) { return a > b ? a : b; }; | ||
|  |     int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits()); | ||
|  |     int num_rhs_bigits = rhs.num_bigits(); | ||
|  |     if (max_lhs_bigits + 1 < num_rhs_bigits) return -1; | ||
|  |     if (max_lhs_bigits > num_rhs_bigits) return 1; | ||
|  |     auto get_bigit = [](const bigint& n, int i) -> bigit { | ||
|  |       return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0; | ||
|  |     }; | ||
|  |     double_bigit borrow = 0; | ||
|  |     int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_); | ||
|  |     for (int i = num_rhs_bigits - 1; i >= min_exp; --i) { | ||
|  |       double_bigit sum = | ||
|  |           static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i); | ||
|  |       bigit rhs_bigit = get_bigit(rhs, i); | ||
|  |       if (sum > rhs_bigit + borrow) return 1; | ||
|  |       borrow = rhs_bigit + borrow - sum; | ||
|  |       if (borrow > 1) return -1; | ||
|  |       borrow <<= bigit_bits; | ||
|  |     } | ||
|  |     return borrow != 0 ? -1 : 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Assigns pow(10, exp) to this bigint.
 | ||
|  |   FMT_CONSTEXPR20 void assign_pow10(int exp) { | ||
|  |     FMT_ASSERT(exp >= 0, ""); | ||
|  |     if (exp == 0) return *this = 1; | ||
|  |     // Find the top bit.
 | ||
|  |     int bitmask = 1; | ||
|  |     while (exp >= bitmask) bitmask <<= 1; | ||
|  |     bitmask >>= 1; | ||
|  |     // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
 | ||
|  |     // repeated squaring and multiplication.
 | ||
|  |     *this = 5; | ||
|  |     bitmask >>= 1; | ||
|  |     while (bitmask != 0) { | ||
|  |       square(); | ||
|  |       if ((exp & bitmask) != 0) *this *= 5; | ||
|  |       bitmask >>= 1; | ||
|  |     } | ||
|  |     *this <<= exp;  // Multiply by pow(2, exp) by shifting.
 | ||
|  |   } | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR20 void square() { | ||
|  |     int num_bigits = static_cast<int>(bigits_.size()); | ||
|  |     int num_result_bigits = 2 * num_bigits; | ||
|  |     basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_)); | ||
|  |     bigits_.resize(to_unsigned(num_result_bigits)); | ||
|  |     auto sum = uint128_t(); | ||
|  |     for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) { | ||
|  |       // Compute bigit at position bigit_index of the result by adding
 | ||
|  |       // cross-product terms n[i] * n[j] such that i + j == bigit_index.
 | ||
|  |       for (int i = 0, j = bigit_index; j >= 0; ++i, --j) { | ||
|  |         // Most terms are multiplied twice which can be optimized in the future.
 | ||
|  |         sum += static_cast<double_bigit>(n[i]) * n[j]; | ||
|  |       } | ||
|  |       (*this)[bigit_index] = static_cast<bigit>(sum); | ||
|  |       sum >>= num_bits<bigit>();  // Compute the carry.
 | ||
|  |     } | ||
|  |     // Do the same for the top half.
 | ||
|  |     for (int bigit_index = num_bigits; bigit_index < num_result_bigits; | ||
|  |          ++bigit_index) { | ||
|  |       for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;) | ||
|  |         sum += static_cast<double_bigit>(n[i++]) * n[j--]; | ||
|  |       (*this)[bigit_index] = static_cast<bigit>(sum); | ||
|  |       sum >>= num_bits<bigit>(); | ||
|  |     } | ||
|  |     remove_leading_zeros(); | ||
|  |     exp_ *= 2; | ||
|  |   } | ||
|  | 
 | ||
|  |   // If this bigint has a bigger exponent than other, adds trailing zero to make
 | ||
|  |   // exponents equal. This simplifies some operations such as subtraction.
 | ||
|  |   FMT_CONSTEXPR20 void align(const bigint& other) { | ||
|  |     int exp_difference = exp_ - other.exp_; | ||
|  |     if (exp_difference <= 0) return; | ||
|  |     int num_bigits = static_cast<int>(bigits_.size()); | ||
|  |     bigits_.resize(to_unsigned(num_bigits + exp_difference)); | ||
|  |     for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j) | ||
|  |       bigits_[j] = bigits_[i]; | ||
|  |     std::uninitialized_fill_n(bigits_.data(), exp_difference, 0u); | ||
|  |     exp_ -= exp_difference; | ||
|  |   } | ||
|  | 
 | ||
|  |   // Divides this bignum by divisor, assigning the remainder to this and
 | ||
|  |   // returning the quotient.
 | ||
|  |   FMT_CONSTEXPR20 auto divmod_assign(const bigint& divisor) -> int { | ||
|  |     FMT_ASSERT(this != &divisor, ""); | ||
|  |     if (compare(*this, divisor) < 0) return 0; | ||
|  |     FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, ""); | ||
|  |     align(divisor); | ||
|  |     int quotient = 0; | ||
|  |     do { | ||
|  |       subtract_aligned(divisor); | ||
|  |       ++quotient; | ||
|  |     } while (compare(*this, divisor) >= 0); | ||
|  |     return quotient; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // format_dragon flags.
 | ||
|  | enum dragon { | ||
|  |   predecessor_closer = 1, | ||
|  |   fixup = 2,  // Run fixup to correct exp10 which can be off by one.
 | ||
|  |   fixed = 4, | ||
|  | }; | ||
|  | 
 | ||
|  | // Formats a floating-point number using a variation of the Fixed-Precision
 | ||
|  | // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
 | ||
|  | // https://fmt.dev/papers/p372-steele.pdf.
 | ||
|  | FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value, | ||
|  |                                           unsigned flags, int num_digits, | ||
|  |                                           buffer<char>& buf, int& exp10) { | ||
|  |   bigint numerator;    // 2 * R in (FPP)^2.
 | ||
|  |   bigint denominator;  // 2 * S in (FPP)^2.
 | ||
|  |   // lower and upper are differences between value and corresponding boundaries.
 | ||
|  |   bigint lower;             // (M^- in (FPP)^2).
 | ||
|  |   bigint upper_store;       // upper's value if different from lower.
 | ||
|  |   bigint* upper = nullptr;  // (M^+ in (FPP)^2).
 | ||
|  |   // Shift numerator and denominator by an extra bit or two (if lower boundary
 | ||
|  |   // is closer) to make lower and upper integers. This eliminates multiplication
 | ||
|  |   // by 2 during later computations.
 | ||
|  |   bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0; | ||
|  |   int shift = is_predecessor_closer ? 2 : 1; | ||
|  |   if (value.e >= 0) { | ||
|  |     numerator = value.f; | ||
|  |     numerator <<= value.e + shift; | ||
|  |     lower = 1; | ||
|  |     lower <<= value.e; | ||
|  |     if (is_predecessor_closer) { | ||
|  |       upper_store = 1; | ||
|  |       upper_store <<= value.e + 1; | ||
|  |       upper = &upper_store; | ||
|  |     } | ||
|  |     denominator.assign_pow10(exp10); | ||
|  |     denominator <<= shift; | ||
|  |   } else if (exp10 < 0) { | ||
|  |     numerator.assign_pow10(-exp10); | ||
|  |     lower.assign(numerator); | ||
|  |     if (is_predecessor_closer) { | ||
|  |       upper_store.assign(numerator); | ||
|  |       upper_store <<= 1; | ||
|  |       upper = &upper_store; | ||
|  |     } | ||
|  |     numerator *= value.f; | ||
|  |     numerator <<= shift; | ||
|  |     denominator = 1; | ||
|  |     denominator <<= shift - value.e; | ||
|  |   } else { | ||
|  |     numerator = value.f; | ||
|  |     numerator <<= shift; | ||
|  |     denominator.assign_pow10(exp10); | ||
|  |     denominator <<= shift - value.e; | ||
|  |     lower = 1; | ||
|  |     if (is_predecessor_closer) { | ||
|  |       upper_store = 1ULL << 1; | ||
|  |       upper = &upper_store; | ||
|  |     } | ||
|  |   } | ||
|  |   int even = static_cast<int>((value.f & 1) == 0); | ||
|  |   if (!upper) upper = &lower; | ||
|  |   bool shortest = num_digits < 0; | ||
|  |   if ((flags & dragon::fixup) != 0) { | ||
|  |     if (add_compare(numerator, *upper, denominator) + even <= 0) { | ||
|  |       --exp10; | ||
|  |       numerator *= 10; | ||
|  |       if (num_digits < 0) { | ||
|  |         lower *= 10; | ||
|  |         if (upper != &lower) *upper *= 10; | ||
|  |       } | ||
|  |     } | ||
|  |     if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1); | ||
|  |   } | ||
|  |   // Invariant: value == (numerator / denominator) * pow(10, exp10).
 | ||
|  |   if (shortest) { | ||
|  |     // Generate the shortest representation.
 | ||
|  |     num_digits = 0; | ||
|  |     char* data = buf.data(); | ||
|  |     for (;;) { | ||
|  |       int digit = numerator.divmod_assign(denominator); | ||
|  |       bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower.
 | ||
|  |       // numerator + upper >[=] pow10:
 | ||
|  |       bool high = add_compare(numerator, *upper, denominator) + even > 0; | ||
|  |       data[num_digits++] = static_cast<char>('0' + digit); | ||
|  |       if (low || high) { | ||
|  |         if (!low) { | ||
|  |           ++data[num_digits - 1]; | ||
|  |         } else if (high) { | ||
|  |           int result = add_compare(numerator, numerator, denominator); | ||
|  |           // Round half to even.
 | ||
|  |           if (result > 0 || (result == 0 && (digit % 2) != 0)) | ||
|  |             ++data[num_digits - 1]; | ||
|  |         } | ||
|  |         buf.try_resize(to_unsigned(num_digits)); | ||
|  |         exp10 -= num_digits - 1; | ||
|  |         return; | ||
|  |       } | ||
|  |       numerator *= 10; | ||
|  |       lower *= 10; | ||
|  |       if (upper != &lower) *upper *= 10; | ||
|  |     } | ||
|  |   } | ||
|  |   // Generate the given number of digits.
 | ||
|  |   exp10 -= num_digits - 1; | ||
|  |   if (num_digits <= 0) { | ||
|  |     denominator *= 10; | ||
|  |     auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0'; | ||
|  |     buf.push_back(digit); | ||
|  |     return; | ||
|  |   } | ||
|  |   buf.try_resize(to_unsigned(num_digits)); | ||
|  |   for (int i = 0; i < num_digits - 1; ++i) { | ||
|  |     int digit = numerator.divmod_assign(denominator); | ||
|  |     buf[i] = static_cast<char>('0' + digit); | ||
|  |     numerator *= 10; | ||
|  |   } | ||
|  |   int digit = numerator.divmod_assign(denominator); | ||
|  |   auto result = add_compare(numerator, numerator, denominator); | ||
|  |   if (result > 0 || (result == 0 && (digit % 2) != 0)) { | ||
|  |     if (digit == 9) { | ||
|  |       const auto overflow = '0' + 10; | ||
|  |       buf[num_digits - 1] = overflow; | ||
|  |       // Propagate the carry.
 | ||
|  |       for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) { | ||
|  |         buf[i] = '0'; | ||
|  |         ++buf[i - 1]; | ||
|  |       } | ||
|  |       if (buf[0] == overflow) { | ||
|  |         buf[0] = '1'; | ||
|  |         if ((flags & dragon::fixed) != 0) | ||
|  |           buf.push_back('0'); | ||
|  |         else | ||
|  |           ++exp10; | ||
|  |       } | ||
|  |       return; | ||
|  |     } | ||
|  |     ++digit; | ||
|  |   } | ||
|  |   buf[num_digits - 1] = static_cast<char>('0' + digit); | ||
|  | } | ||
|  | 
 | ||
|  | // Formats a floating-point number using the hexfloat format.
 | ||
|  | template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)> | ||
|  | FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision, | ||
|  |                                      float_specs specs, buffer<char>& buf) { | ||
|  |   // float is passed as double to reduce the number of instantiations and to
 | ||
|  |   // simplify implementation.
 | ||
|  |   static_assert(!std::is_same<Float, float>::value, ""); | ||
|  | 
 | ||
|  |   using info = dragonbox::float_info<Float>; | ||
|  | 
 | ||
|  |   // Assume Float is in the format [sign][exponent][significand].
 | ||
|  |   using carrier_uint = typename info::carrier_uint; | ||
|  | 
 | ||
|  |   constexpr auto num_float_significand_bits = | ||
|  |       detail::num_significand_bits<Float>(); | ||
|  | 
 | ||
|  |   basic_fp<carrier_uint> f(value); | ||
|  |   f.e += num_float_significand_bits; | ||
|  |   if (!has_implicit_bit<Float>()) --f.e; | ||
|  | 
 | ||
|  |   constexpr auto num_fraction_bits = | ||
|  |       num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0); | ||
|  |   constexpr auto num_xdigits = (num_fraction_bits + 3) / 4; | ||
|  | 
 | ||
|  |   constexpr auto leading_shift = ((num_xdigits - 1) * 4); | ||
|  |   const auto leading_mask = carrier_uint(0xF) << leading_shift; | ||
|  |   const auto leading_xdigit = | ||
|  |       static_cast<uint32_t>((f.f & leading_mask) >> leading_shift); | ||
|  |   if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1); | ||
|  | 
 | ||
|  |   int print_xdigits = num_xdigits - 1; | ||
|  |   if (precision >= 0 && print_xdigits > precision) { | ||
|  |     const int shift = ((print_xdigits - precision - 1) * 4); | ||
|  |     const auto mask = carrier_uint(0xF) << shift; | ||
|  |     const auto v = static_cast<uint32_t>((f.f & mask) >> shift); | ||
|  | 
 | ||
|  |     if (v >= 8) { | ||
|  |       const auto inc = carrier_uint(1) << (shift + 4); | ||
|  |       f.f += inc; | ||
|  |       f.f &= ~(inc - 1); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Check long double overflow
 | ||
|  |     if (!has_implicit_bit<Float>()) { | ||
|  |       const auto implicit_bit = carrier_uint(1) << num_float_significand_bits; | ||
|  |       if ((f.f & implicit_bit) == implicit_bit) { | ||
|  |         f.f >>= 4; | ||
|  |         f.e += 4; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     print_xdigits = precision; | ||
|  |   } | ||
|  | 
 | ||
|  |   char xdigits[num_bits<carrier_uint>() / 4]; | ||
|  |   detail::fill_n(xdigits, sizeof(xdigits), '0'); | ||
|  |   format_uint<4>(xdigits, f.f, num_xdigits, specs.upper); | ||
|  | 
 | ||
|  |   // Remove zero tail
 | ||
|  |   while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits; | ||
|  | 
 | ||
|  |   buf.push_back('0'); | ||
|  |   buf.push_back(specs.upper ? 'X' : 'x'); | ||
|  |   buf.push_back(xdigits[0]); | ||
|  |   if (specs.showpoint || print_xdigits > 0 || print_xdigits < precision) | ||
|  |     buf.push_back('.'); | ||
|  |   buf.append(xdigits + 1, xdigits + 1 + print_xdigits); | ||
|  |   for (; print_xdigits < precision; ++print_xdigits) buf.push_back('0'); | ||
|  | 
 | ||
|  |   buf.push_back(specs.upper ? 'P' : 'p'); | ||
|  | 
 | ||
|  |   uint32_t abs_e; | ||
|  |   if (f.e < 0) { | ||
|  |     buf.push_back('-'); | ||
|  |     abs_e = static_cast<uint32_t>(-f.e); | ||
|  |   } else { | ||
|  |     buf.push_back('+'); | ||
|  |     abs_e = static_cast<uint32_t>(f.e); | ||
|  |   } | ||
|  |   format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)> | ||
|  | FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision, | ||
|  |                                      float_specs specs, buffer<char>& buf) { | ||
|  |   format_hexfloat(static_cast<double>(value), precision, specs, buf); | ||
|  | } | ||
|  | 
 | ||
|  | constexpr auto fractional_part_rounding_thresholds(int index) -> uint32_t { | ||
|  |   // For checking rounding thresholds.
 | ||
|  |   // The kth entry is chosen to be the smallest integer such that the
 | ||
|  |   // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
 | ||
|  |   // It is equal to ceil(2^31 + 2^32/10^(k + 1)).
 | ||
|  |   // These are stored in a string literal because we cannot have static arrays
 | ||
|  |   // in constexpr functions and non-static ones are poorly optimized.
 | ||
|  |   return U"\x9999999a\x828f5c29\x80418938\x80068db9\x8000a7c6\x800010c7" | ||
|  |          U"\x800001ae\x8000002b"[index]; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Float> | ||
|  | FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs, | ||
|  |                                   buffer<char>& buf) -> int { | ||
|  |   // float is passed as double to reduce the number of instantiations.
 | ||
|  |   static_assert(!std::is_same<Float, float>::value, ""); | ||
|  |   FMT_ASSERT(value >= 0, "value is negative"); | ||
|  |   auto converted_value = convert_float(value); | ||
|  | 
 | ||
|  |   const bool fixed = specs.format == float_format::fixed; | ||
|  |   if (value <= 0) {  // <= instead of == to silence a warning.
 | ||
|  |     if (precision <= 0 || !fixed) { | ||
|  |       buf.push_back('0'); | ||
|  |       return 0; | ||
|  |     } | ||
|  |     buf.try_resize(to_unsigned(precision)); | ||
|  |     fill_n(buf.data(), precision, '0'); | ||
|  |     return -precision; | ||
|  |   } | ||
|  | 
 | ||
|  |   int exp = 0; | ||
|  |   bool use_dragon = true; | ||
|  |   unsigned dragon_flags = 0; | ||
|  |   if (!is_fast_float<Float>() || is_constant_evaluated()) { | ||
|  |     const auto inv_log2_10 = 0.3010299956639812;  // 1 / log2(10)
 | ||
|  |     using info = dragonbox::float_info<decltype(converted_value)>; | ||
|  |     const auto f = basic_fp<typename info::carrier_uint>(converted_value); | ||
|  |     // Compute exp, an approximate power of 10, such that
 | ||
|  |     //   10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
 | ||
|  |     // This is based on log10(value) == log2(value) / log2(10) and approximation
 | ||
|  |     // of log2(value) by e + num_fraction_bits idea from double-conversion.
 | ||
|  |     auto e = (f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10; | ||
|  |     exp = static_cast<int>(e); | ||
|  |     if (e > exp) ++exp;  // Compute ceil.
 | ||
|  |     dragon_flags = dragon::fixup; | ||
|  |   } else if (precision < 0) { | ||
|  |     // Use Dragonbox for the shortest format.
 | ||
|  |     if (specs.binary32) { | ||
|  |       auto dec = dragonbox::to_decimal(static_cast<float>(value)); | ||
|  |       write<char>(buffer_appender<char>(buf), dec.significand); | ||
|  |       return dec.exponent; | ||
|  |     } | ||
|  |     auto dec = dragonbox::to_decimal(static_cast<double>(value)); | ||
|  |     write<char>(buffer_appender<char>(buf), dec.significand); | ||
|  |     return dec.exponent; | ||
|  |   } else { | ||
|  |     // Extract significand bits and exponent bits.
 | ||
|  |     using info = dragonbox::float_info<double>; | ||
|  |     auto br = bit_cast<uint64_t>(static_cast<double>(value)); | ||
|  | 
 | ||
|  |     const uint64_t significand_mask = | ||
|  |         (static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1; | ||
|  |     uint64_t significand = (br & significand_mask); | ||
|  |     int exponent = static_cast<int>((br & exponent_mask<double>()) >> | ||
|  |                                     num_significand_bits<double>()); | ||
|  | 
 | ||
|  |     if (exponent != 0) {  // Check if normal.
 | ||
|  |       exponent -= exponent_bias<double>() + num_significand_bits<double>(); | ||
|  |       significand |= | ||
|  |           (static_cast<uint64_t>(1) << num_significand_bits<double>()); | ||
|  |       significand <<= 1; | ||
|  |     } else { | ||
|  |       // Normalize subnormal inputs.
 | ||
|  |       FMT_ASSERT(significand != 0, "zeros should not appear here"); | ||
|  |       int shift = countl_zero(significand); | ||
|  |       FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(), | ||
|  |                  ""); | ||
|  |       shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2); | ||
|  |       exponent = (std::numeric_limits<double>::min_exponent - | ||
|  |                   num_significand_bits<double>()) - | ||
|  |                  shift; | ||
|  |       significand <<= shift; | ||
|  |     } | ||
|  | 
 | ||
|  |     // Compute the first several nonzero decimal significand digits.
 | ||
|  |     // We call the number we get the first segment.
 | ||
|  |     const int k = info::kappa - dragonbox::floor_log10_pow2(exponent); | ||
|  |     exp = -k; | ||
|  |     const int beta = exponent + dragonbox::floor_log2_pow10(k); | ||
|  |     uint64_t first_segment; | ||
|  |     bool has_more_segments; | ||
|  |     int digits_in_the_first_segment; | ||
|  |     { | ||
|  |       const auto r = dragonbox::umul192_upper128( | ||
|  |           significand << beta, dragonbox::get_cached_power(k)); | ||
|  |       first_segment = r.high(); | ||
|  |       has_more_segments = r.low() != 0; | ||
|  | 
 | ||
|  |       // The first segment can have 18 ~ 19 digits.
 | ||
|  |       if (first_segment >= 1000000000000000000ULL) { | ||
|  |         digits_in_the_first_segment = 19; | ||
|  |       } else { | ||
|  |         // When it is of 18-digits, we align it to 19-digits by adding a bogus
 | ||
|  |         // zero at the end.
 | ||
|  |         digits_in_the_first_segment = 18; | ||
|  |         first_segment *= 10; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     // Compute the actual number of decimal digits to print.
 | ||
|  |     if (fixed) adjust_precision(precision, exp + digits_in_the_first_segment); | ||
|  | 
 | ||
|  |     // Use Dragon4 only when there might be not enough digits in the first
 | ||
|  |     // segment.
 | ||
|  |     if (digits_in_the_first_segment > precision) { | ||
|  |       use_dragon = false; | ||
|  | 
 | ||
|  |       if (precision <= 0) { | ||
|  |         exp += digits_in_the_first_segment; | ||
|  | 
 | ||
|  |         if (precision < 0) { | ||
|  |           // Nothing to do, since all we have are just leading zeros.
 | ||
|  |           buf.try_resize(0); | ||
|  |         } else { | ||
|  |           // We may need to round-up.
 | ||
|  |           buf.try_resize(1); | ||
|  |           if ((first_segment | static_cast<uint64_t>(has_more_segments)) > | ||
|  |               5000000000000000000ULL) { | ||
|  |             buf[0] = '1'; | ||
|  |           } else { | ||
|  |             buf[0] = '0'; | ||
|  |           } | ||
|  |         } | ||
|  |       }  // precision <= 0
 | ||
|  |       else { | ||
|  |         exp += digits_in_the_first_segment - precision; | ||
|  | 
 | ||
|  |         // When precision > 0, we divide the first segment into three
 | ||
|  |         // subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits
 | ||
|  |         // in 32-bits which usually allows faster calculation than in
 | ||
|  |         // 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize
 | ||
|  |         // division-by-constant for large 64-bit divisors, we do it here
 | ||
|  |         // manually. The magic number 7922816251426433760 below is equal to
 | ||
|  |         // ceil(2^(64+32) / 10^10).
 | ||
|  |         const uint32_t first_subsegment = static_cast<uint32_t>( | ||
|  |             dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >> | ||
|  |             32); | ||
|  |         const uint64_t second_third_subsegments = | ||
|  |             first_segment - first_subsegment * 10000000000ULL; | ||
|  | 
 | ||
|  |         uint64_t prod; | ||
|  |         uint32_t digits; | ||
|  |         bool should_round_up; | ||
|  |         int number_of_digits_to_print = precision > 9 ? 9 : precision; | ||
|  | 
 | ||
|  |         // Print a 9-digits subsegment, either the first or the second.
 | ||
|  |         auto print_subsegment = [&](uint32_t subsegment, char* buffer) { | ||
|  |           int number_of_digits_printed = 0; | ||
|  | 
 | ||
|  |           // If we want to print an odd number of digits from the subsegment,
 | ||
|  |           if ((number_of_digits_to_print & 1) != 0) { | ||
|  |             // Convert to 64-bit fixed-point fractional form with 1-digit
 | ||
|  |             // integer part. The magic number 720575941 is a good enough
 | ||
|  |             // approximation of 2^(32 + 24) / 10^8; see
 | ||
|  |             // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
 | ||
|  |             // for details.
 | ||
|  |             prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1; | ||
|  |             digits = static_cast<uint32_t>(prod >> 32); | ||
|  |             *buffer = static_cast<char>('0' + digits); | ||
|  |             number_of_digits_printed++; | ||
|  |           } | ||
|  |           // If we want to print an even number of digits from the
 | ||
|  |           // first_subsegment,
 | ||
|  |           else { | ||
|  |             // Convert to 64-bit fixed-point fractional form with 2-digits
 | ||
|  |             // integer part. The magic number 450359963 is a good enough
 | ||
|  |             // approximation of 2^(32 + 20) / 10^7; see
 | ||
|  |             // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
 | ||
|  |             // for details.
 | ||
|  |             prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1; | ||
|  |             digits = static_cast<uint32_t>(prod >> 32); | ||
|  |             copy2(buffer, digits2(digits)); | ||
|  |             number_of_digits_printed += 2; | ||
|  |           } | ||
|  | 
 | ||
|  |           // Print all digit pairs.
 | ||
|  |           while (number_of_digits_printed < number_of_digits_to_print) { | ||
|  |             prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100); | ||
|  |             digits = static_cast<uint32_t>(prod >> 32); | ||
|  |             copy2(buffer + number_of_digits_printed, digits2(digits)); | ||
|  |             number_of_digits_printed += 2; | ||
|  |           } | ||
|  |         }; | ||
|  | 
 | ||
|  |         // Print first subsegment.
 | ||
|  |         print_subsegment(first_subsegment, buf.data()); | ||
|  | 
 | ||
|  |         // Perform rounding if the first subsegment is the last subsegment to
 | ||
|  |         // print.
 | ||
|  |         if (precision <= 9) { | ||
|  |           // Rounding inside the subsegment.
 | ||
|  |           // We round-up if:
 | ||
|  |           //  - either the fractional part is strictly larger than 1/2, or
 | ||
|  |           //  - the fractional part is exactly 1/2 and the last digit is odd.
 | ||
|  |           // We rely on the following observations:
 | ||
|  |           //  - If fractional_part >= threshold, then the fractional part is
 | ||
|  |           //    strictly larger than 1/2.
 | ||
|  |           //  - If the MSB of fractional_part is set, then the fractional part
 | ||
|  |           //    must be at least 1/2.
 | ||
|  |           //  - When the MSB of fractional_part is set, either
 | ||
|  |           //    second_third_subsegments being nonzero or has_more_segments
 | ||
|  |           //    being true means there are further digits not printed, so the
 | ||
|  |           //    fractional part is strictly larger than 1/2.
 | ||
|  |           if (precision < 9) { | ||
|  |             uint32_t fractional_part = static_cast<uint32_t>(prod); | ||
|  |             should_round_up = | ||
|  |                 fractional_part >= fractional_part_rounding_thresholds( | ||
|  |                                        8 - number_of_digits_to_print) || | ||
|  |                 ((fractional_part >> 31) & | ||
|  |                  ((digits & 1) | (second_third_subsegments != 0) | | ||
|  |                   has_more_segments)) != 0; | ||
|  |           } | ||
|  |           // Rounding at the subsegment boundary.
 | ||
|  |           // In this case, the fractional part is at least 1/2 if and only if
 | ||
|  |           // second_third_subsegments >= 5000000000ULL, and is strictly larger
 | ||
|  |           // than 1/2 if we further have either second_third_subsegments >
 | ||
|  |           // 5000000000ULL or has_more_segments == true.
 | ||
|  |           else { | ||
|  |             should_round_up = second_third_subsegments > 5000000000ULL || | ||
|  |                               (second_third_subsegments == 5000000000ULL && | ||
|  |                                ((digits & 1) != 0 || has_more_segments)); | ||
|  |           } | ||
|  |         } | ||
|  |         // Otherwise, print the second subsegment.
 | ||
|  |         else { | ||
|  |           // Compilers are not aware of how to leverage the maximum value of
 | ||
|  |           // second_third_subsegments to find out a better magic number which
 | ||
|  |           // allows us to eliminate an additional shift. 1844674407370955162 =
 | ||
|  |           // ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))).
 | ||
|  |           const uint32_t second_subsegment = | ||
|  |               static_cast<uint32_t>(dragonbox::umul128_upper64( | ||
|  |                   second_third_subsegments, 1844674407370955162ULL)); | ||
|  |           const uint32_t third_subsegment = | ||
|  |               static_cast<uint32_t>(second_third_subsegments) - | ||
|  |               second_subsegment * 10; | ||
|  | 
 | ||
|  |           number_of_digits_to_print = precision - 9; | ||
|  |           print_subsegment(second_subsegment, buf.data() + 9); | ||
|  | 
 | ||
|  |           // Rounding inside the subsegment.
 | ||
|  |           if (precision < 18) { | ||
|  |             // The condition third_subsegment != 0 implies that the segment was
 | ||
|  |             // of 19 digits, so in this case the third segment should be
 | ||
|  |             // consisting of a genuine digit from the input.
 | ||
|  |             uint32_t fractional_part = static_cast<uint32_t>(prod); | ||
|  |             should_round_up = | ||
|  |                 fractional_part >= fractional_part_rounding_thresholds( | ||
|  |                                        8 - number_of_digits_to_print) || | ||
|  |                 ((fractional_part >> 31) & | ||
|  |                  ((digits & 1) | (third_subsegment != 0) | | ||
|  |                   has_more_segments)) != 0; | ||
|  |           } | ||
|  |           // Rounding at the subsegment boundary.
 | ||
|  |           else { | ||
|  |             // In this case, the segment must be of 19 digits, thus
 | ||
|  |             // the third subsegment should be consisting of a genuine digit from
 | ||
|  |             // the input.
 | ||
|  |             should_round_up = third_subsegment > 5 || | ||
|  |                               (third_subsegment == 5 && | ||
|  |                                ((digits & 1) != 0 || has_more_segments)); | ||
|  |           } | ||
|  |         } | ||
|  | 
 | ||
|  |         // Round-up if necessary.
 | ||
|  |         if (should_round_up) { | ||
|  |           ++buf[precision - 1]; | ||
|  |           for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) { | ||
|  |             buf[i] = '0'; | ||
|  |             ++buf[i - 1]; | ||
|  |           } | ||
|  |           if (buf[0] > '9') { | ||
|  |             buf[0] = '1'; | ||
|  |             if (fixed) | ||
|  |               buf[precision++] = '0'; | ||
|  |             else | ||
|  |               ++exp; | ||
|  |           } | ||
|  |         } | ||
|  |         buf.try_resize(to_unsigned(precision)); | ||
|  |       } | ||
|  |     }  // if (digits_in_the_first_segment > precision)
 | ||
|  |     else { | ||
|  |       // Adjust the exponent for its use in Dragon4.
 | ||
|  |       exp += digits_in_the_first_segment - 1; | ||
|  |     } | ||
|  |   } | ||
|  |   if (use_dragon) { | ||
|  |     auto f = basic_fp<uint128_t>(); | ||
|  |     bool is_predecessor_closer = specs.binary32 | ||
|  |                                      ? f.assign(static_cast<float>(value)) | ||
|  |                                      : f.assign(converted_value); | ||
|  |     if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer; | ||
|  |     if (fixed) dragon_flags |= dragon::fixed; | ||
|  |     // Limit precision to the maximum possible number of significant digits in
 | ||
|  |     // an IEEE754 double because we don't need to generate zeros.
 | ||
|  |     const int max_double_digits = 767; | ||
|  |     if (precision > max_double_digits) precision = max_double_digits; | ||
|  |     format_dragon(f, dragon_flags, precision, buf, exp); | ||
|  |   } | ||
|  |   if (!fixed && !specs.showpoint) { | ||
|  |     // Remove trailing zeros.
 | ||
|  |     auto num_digits = buf.size(); | ||
|  |     while (num_digits > 0 && buf[num_digits - 1] == '0') { | ||
|  |       --num_digits; | ||
|  |       ++exp; | ||
|  |     } | ||
|  |     buf.try_resize(num_digits); | ||
|  |   } | ||
|  |   return exp; | ||
|  | } | ||
|  | template <typename Char, typename OutputIt, typename T> | ||
|  | FMT_CONSTEXPR20 auto write_float(OutputIt out, T value, | ||
|  |                                  format_specs<Char> specs, locale_ref loc) | ||
|  |     -> OutputIt { | ||
|  |   float_specs fspecs = parse_float_type_spec(specs); | ||
|  |   fspecs.sign = specs.sign; | ||
|  |   if (detail::signbit(value)) {  // value < 0 is false for NaN so use signbit.
 | ||
|  |     fspecs.sign = sign::minus; | ||
|  |     value = -value; | ||
|  |   } else if (fspecs.sign == sign::minus) { | ||
|  |     fspecs.sign = sign::none; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (!detail::isfinite(value)) | ||
|  |     return write_nonfinite(out, detail::isnan(value), specs, fspecs); | ||
|  | 
 | ||
|  |   if (specs.align == align::numeric && fspecs.sign) { | ||
|  |     auto it = reserve(out, 1); | ||
|  |     *it++ = detail::sign<Char>(fspecs.sign); | ||
|  |     out = base_iterator(out, it); | ||
|  |     fspecs.sign = sign::none; | ||
|  |     if (specs.width != 0) --specs.width; | ||
|  |   } | ||
|  | 
 | ||
|  |   memory_buffer buffer; | ||
|  |   if (fspecs.format == float_format::hex) { | ||
|  |     if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign)); | ||
|  |     format_hexfloat(convert_float(value), specs.precision, fspecs, buffer); | ||
|  |     return write_bytes<align::right>(out, {buffer.data(), buffer.size()}, | ||
|  |                                      specs); | ||
|  |   } | ||
|  |   int precision = specs.precision >= 0 || specs.type == presentation_type::none | ||
|  |                       ? specs.precision | ||
|  |                       : 6; | ||
|  |   if (fspecs.format == float_format::exp) { | ||
|  |     if (precision == max_value<int>()) | ||
|  |       throw_format_error("number is too big"); | ||
|  |     else | ||
|  |       ++precision; | ||
|  |   } else if (fspecs.format != float_format::fixed && precision == 0) { | ||
|  |     precision = 1; | ||
|  |   } | ||
|  |   if (const_check(std::is_same<T, float>())) fspecs.binary32 = true; | ||
|  |   int exp = format_float(convert_float(value), precision, fspecs, buffer); | ||
|  |   fspecs.precision = precision; | ||
|  |   auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp}; | ||
|  |   return write_float(out, f, specs, fspecs, loc); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(is_floating_point<T>::value)> | ||
|  | FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs<Char> specs, | ||
|  |                            locale_ref loc = {}) -> OutputIt { | ||
|  |   if (const_check(!is_supported_floating_point(value))) return out; | ||
|  |   return specs.localized && write_loc(out, value, specs, loc) | ||
|  |              ? out | ||
|  |              : write_float(out, value, specs, loc); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(is_fast_float<T>::value)> | ||
|  | FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt { | ||
|  |   if (is_constant_evaluated()) return write(out, value, format_specs<Char>()); | ||
|  |   if (const_check(!is_supported_floating_point(value))) return out; | ||
|  | 
 | ||
|  |   auto fspecs = float_specs(); | ||
|  |   if (detail::signbit(value)) { | ||
|  |     fspecs.sign = sign::minus; | ||
|  |     value = -value; | ||
|  |   } | ||
|  | 
 | ||
|  |   constexpr auto specs = format_specs<Char>(); | ||
|  |   using floaty = conditional_t<std::is_same<T, long double>::value, double, T>; | ||
|  |   using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint; | ||
|  |   floaty_uint mask = exponent_mask<floaty>(); | ||
|  |   if ((bit_cast<floaty_uint>(value) & mask) == mask) | ||
|  |     return write_nonfinite(out, std::isnan(value), specs, fspecs); | ||
|  | 
 | ||
|  |   auto dec = dragonbox::to_decimal(static_cast<floaty>(value)); | ||
|  |   return write_float(out, dec, specs, fspecs, {}); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(is_floating_point<T>::value && | ||
|  |                         !is_fast_float<T>::value)> | ||
|  | inline auto write(OutputIt out, T value) -> OutputIt { | ||
|  |   return write(out, value, format_specs<Char>()); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | auto write(OutputIt out, monostate, format_specs<Char> = {}, locale_ref = {}) | ||
|  |     -> OutputIt { | ||
|  |   FMT_ASSERT(false, ""); | ||
|  |   return out; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value) | ||
|  |     -> OutputIt { | ||
|  |   auto it = reserve(out, value.size()); | ||
|  |   it = copy_str_noinline<Char>(value.begin(), value.end(), it); | ||
|  |   return base_iterator(out, it); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(is_string<T>::value)> | ||
|  | constexpr auto write(OutputIt out, const T& value) -> OutputIt { | ||
|  |   return write<Char>(out, to_string_view(value)); | ||
|  | } | ||
|  | 
 | ||
|  | // FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
 | ||
|  | template < | ||
|  |     typename Char, typename OutputIt, typename T, | ||
|  |     bool check = | ||
|  |         std::is_enum<T>::value && !std::is_same<T, Char>::value && | ||
|  |         mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value != | ||
|  |             type::custom_type, | ||
|  |     FMT_ENABLE_IF(check)> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt { | ||
|  |   return write<Char>(out, static_cast<underlying_t<T>>(value)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(std::is_same<T, bool>::value)> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, T value, | ||
|  |                          const format_specs<Char>& specs = {}, locale_ref = {}) | ||
|  |     -> OutputIt { | ||
|  |   return specs.type != presentation_type::none && | ||
|  |                  specs.type != presentation_type::string | ||
|  |              ? write(out, value ? 1 : 0, specs, {}) | ||
|  |              : write_bytes(out, value ? "true" : "false", specs); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt { | ||
|  |   auto it = reserve(out, 1); | ||
|  |   *it++ = value; | ||
|  |   return base_iterator(out, it); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt> | ||
|  | FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value) | ||
|  |     -> OutputIt { | ||
|  |   if (value) return write(out, basic_string_view<Char>(value)); | ||
|  |   throw_format_error("string pointer is null"); | ||
|  |   return out; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           FMT_ENABLE_IF(std::is_same<T, void>::value)> | ||
|  | auto write(OutputIt out, const T* value, const format_specs<Char>& specs = {}, | ||
|  |            locale_ref = {}) -> OutputIt { | ||
|  |   return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs); | ||
|  | } | ||
|  | 
 | ||
|  | // A write overload that handles implicit conversions.
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           typename Context = basic_format_context<OutputIt, Char>> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t< | ||
|  |     std::is_class<T>::value && !is_string<T>::value && | ||
|  |         !is_floating_point<T>::value && !std::is_same<T, Char>::value && | ||
|  |         !std::is_same<T, remove_cvref_t<decltype(arg_mapper<Context>().map( | ||
|  |                              value))>>::value, | ||
|  |     OutputIt> { | ||
|  |   return write<Char>(out, arg_mapper<Context>().map(value)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, typename OutputIt, typename T, | ||
|  |           typename Context = basic_format_context<OutputIt, Char>> | ||
|  | FMT_CONSTEXPR auto write(OutputIt out, const T& value) | ||
|  |     -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type, | ||
|  |                    OutputIt> { | ||
|  |   auto formatter = typename Context::template formatter_type<T>(); | ||
|  |   auto parse_ctx = typename Context::parse_context_type({}); | ||
|  |   formatter.parse(parse_ctx); | ||
|  |   auto ctx = Context(out, {}, {}); | ||
|  |   return formatter.format(value, ctx); | ||
|  | } | ||
|  | 
 | ||
|  | // An argument visitor that formats the argument and writes it via the output
 | ||
|  | // iterator. It's a class and not a generic lambda for compatibility with C++11.
 | ||
|  | template <typename Char> struct default_arg_formatter { | ||
|  |   using iterator = buffer_appender<Char>; | ||
|  |   using context = buffer_context<Char>; | ||
|  | 
 | ||
|  |   iterator out; | ||
|  |   basic_format_args<context> args; | ||
|  |   locale_ref loc; | ||
|  | 
 | ||
|  |   template <typename T> auto operator()(T value) -> iterator { | ||
|  |     return write<Char>(out, value); | ||
|  |   } | ||
|  |   auto operator()(typename basic_format_arg<context>::handle h) -> iterator { | ||
|  |     basic_format_parse_context<Char> parse_ctx({}); | ||
|  |     context format_ctx(out, args, loc); | ||
|  |     h.format(parse_ctx, format_ctx); | ||
|  |     return format_ctx.out(); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename Char> struct arg_formatter { | ||
|  |   using iterator = buffer_appender<Char>; | ||
|  |   using context = buffer_context<Char>; | ||
|  | 
 | ||
|  |   iterator out; | ||
|  |   const format_specs<Char>& specs; | ||
|  |   locale_ref locale; | ||
|  | 
 | ||
|  |   template <typename T> | ||
|  |   FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator { | ||
|  |     return detail::write(out, value, specs, locale); | ||
|  |   } | ||
|  |   auto operator()(typename basic_format_arg<context>::handle) -> iterator { | ||
|  |     // User-defined types are handled separately because they require access
 | ||
|  |     // to the parse context.
 | ||
|  |     return out; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | struct width_checker { | ||
|  |   template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> | ||
|  |   FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { | ||
|  |     if (is_negative(value)) throw_format_error("negative width"); | ||
|  |     return static_cast<unsigned long long>(value); | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> | ||
|  |   FMT_CONSTEXPR auto operator()(T) -> unsigned long long { | ||
|  |     throw_format_error("width is not integer"); | ||
|  |     return 0; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | struct precision_checker { | ||
|  |   template <typename T, FMT_ENABLE_IF(is_integer<T>::value)> | ||
|  |   FMT_CONSTEXPR auto operator()(T value) -> unsigned long long { | ||
|  |     if (is_negative(value)) throw_format_error("negative precision"); | ||
|  |     return static_cast<unsigned long long>(value); | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)> | ||
|  |   FMT_CONSTEXPR auto operator()(T) -> unsigned long long { | ||
|  |     throw_format_error("precision is not integer"); | ||
|  |     return 0; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename Handler, typename FormatArg> | ||
|  | FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg) -> int { | ||
|  |   unsigned long long value = visit_format_arg(Handler(), arg); | ||
|  |   if (value > to_unsigned(max_value<int>())) | ||
|  |     throw_format_error("number is too big"); | ||
|  |   return static_cast<int>(value); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Context, typename ID> | ||
|  | FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> decltype(ctx.arg(id)) { | ||
|  |   auto arg = ctx.arg(id); | ||
|  |   if (!arg) ctx.on_error("argument not found"); | ||
|  |   return arg; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Handler, typename Context> | ||
|  | FMT_CONSTEXPR void handle_dynamic_spec(int& value, | ||
|  |                                        arg_ref<typename Context::char_type> ref, | ||
|  |                                        Context& ctx) { | ||
|  |   switch (ref.kind) { | ||
|  |   case arg_id_kind::none: | ||
|  |     break; | ||
|  |   case arg_id_kind::index: | ||
|  |     value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index)); | ||
|  |     break; | ||
|  |   case arg_id_kind::name: | ||
|  |     value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name)); | ||
|  |     break; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | #if FMT_USE_USER_DEFINED_LITERALS
 | ||
|  | #  if FMT_USE_NONTYPE_TEMPLATE_ARGS
 | ||
|  | template <typename T, typename Char, size_t N, | ||
|  |           fmt::detail_exported::fixed_string<Char, N> Str> | ||
|  | struct statically_named_arg : view { | ||
|  |   static constexpr auto name = Str.data; | ||
|  | 
 | ||
|  |   const T& value; | ||
|  |   statically_named_arg(const T& v) : value(v) {} | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T, typename Char, size_t N, | ||
|  |           fmt::detail_exported::fixed_string<Char, N> Str> | ||
|  | struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {}; | ||
|  | 
 | ||
|  | template <typename T, typename Char, size_t N, | ||
|  |           fmt::detail_exported::fixed_string<Char, N> Str> | ||
|  | struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>> | ||
|  |     : std::true_type {}; | ||
|  | 
 | ||
|  | template <typename Char, size_t N, | ||
|  |           fmt::detail_exported::fixed_string<Char, N> Str> | ||
|  | struct udl_arg { | ||
|  |   template <typename T> auto operator=(T&& value) const { | ||
|  |     return statically_named_arg<T, Char, N, Str>(std::forward<T>(value)); | ||
|  |   } | ||
|  | }; | ||
|  | #  else
 | ||
|  | template <typename Char> struct udl_arg { | ||
|  |   const Char* str; | ||
|  | 
 | ||
|  |   template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> { | ||
|  |     return {str, std::forward<T>(value)}; | ||
|  |   } | ||
|  | }; | ||
|  | #  endif
 | ||
|  | #endif  // FMT_USE_USER_DEFINED_LITERALS
 | ||
|  | 
 | ||
|  | template <typename Locale, typename Char> | ||
|  | auto vformat(const Locale& loc, basic_string_view<Char> fmt, | ||
|  |              basic_format_args<buffer_context<type_identity_t<Char>>> args) | ||
|  |     -> std::basic_string<Char> { | ||
|  |   auto buf = basic_memory_buffer<Char>(); | ||
|  |   detail::vformat_to(buf, fmt, args, detail::locale_ref(loc)); | ||
|  |   return {buf.data(), buf.size()}; | ||
|  | } | ||
|  | 
 | ||
|  | using format_func = void (*)(detail::buffer<char>&, int, const char*); | ||
|  | 
 | ||
|  | FMT_API void format_error_code(buffer<char>& out, int error_code, | ||
|  |                                string_view message) noexcept; | ||
|  | 
 | ||
|  | FMT_API void report_error(format_func func, int error_code, | ||
|  |                           const char* message) noexcept; | ||
|  | }  // namespace detail
 | ||
|  | 
 | ||
|  | FMT_API auto vsystem_error(int error_code, string_view format_str, | ||
|  |                            format_args args) -> std::system_error; | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   Constructs :class:`std::system_error` with a message formatted with | ||
|  |   ``fmt::format(fmt, args...)``. | ||
|  |   *error_code* is a system error code as given by ``errno``. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |     // This throws std::system_error with the description
 | ||
|  |     //   cannot open file 'madeup': No such file or directory
 | ||
|  |     // or similar (system message may vary).
 | ||
|  |     const char* filename = "madeup"; | ||
|  |     std::FILE* file = std::fopen(filename, "r"); | ||
|  |     if (!file) | ||
|  |       throw fmt::system_error(errno, "cannot open file '{}'", filename); | ||
|  |   \endrst | ||
|  |  */ | ||
|  | template <typename... T> | ||
|  | auto system_error(int error_code, format_string<T...> fmt, T&&... args) | ||
|  |     -> std::system_error { | ||
|  |   return vsystem_error(error_code, fmt, fmt::make_format_args(args...)); | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   Formats an error message for an error returned by an operating system or a | ||
|  |   language runtime, for example a file opening error, and writes it to *out*. | ||
|  |   The format is the same as the one used by ``std::system_error(ec, message)`` | ||
|  |   where ``ec`` is ``std::error_code(error_code, std::generic_category()})``. | ||
|  |   It is implementation-defined but normally looks like: | ||
|  | 
 | ||
|  |   .. parsed-literal:: | ||
|  |      *<message>*: *<system-message>* | ||
|  | 
 | ||
|  |   where *<message>* is the passed message and *<system-message>* is the system | ||
|  |   message corresponding to the error code. | ||
|  |   *error_code* is a system error code as given by ``errno``. | ||
|  |   \endrst | ||
|  |  */ | ||
|  | FMT_API void format_system_error(detail::buffer<char>& out, int error_code, | ||
|  |                                  const char* message) noexcept; | ||
|  | 
 | ||
|  | // Reports a system error without throwing an exception.
 | ||
|  | // Can be used to report errors from destructors.
 | ||
|  | FMT_API void report_system_error(int error_code, const char* message) noexcept; | ||
|  | 
 | ||
|  | /** Fast integer formatter. */ | ||
|  | class format_int { | ||
|  |  private: | ||
|  |   // Buffer should be large enough to hold all digits (digits10 + 1),
 | ||
|  |   // a sign and a null character.
 | ||
|  |   enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 }; | ||
|  |   mutable char buffer_[buffer_size]; | ||
|  |   char* str_; | ||
|  | 
 | ||
|  |   template <typename UInt> auto format_unsigned(UInt value) -> char* { | ||
|  |     auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value); | ||
|  |     return detail::format_decimal(buffer_, n, buffer_size - 1).begin; | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename Int> auto format_signed(Int value) -> char* { | ||
|  |     auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value); | ||
|  |     bool negative = value < 0; | ||
|  |     if (negative) abs_value = 0 - abs_value; | ||
|  |     auto begin = format_unsigned(abs_value); | ||
|  |     if (negative) *--begin = '-'; | ||
|  |     return begin; | ||
|  |   } | ||
|  | 
 | ||
|  |  public: | ||
|  |   explicit format_int(int value) : str_(format_signed(value)) {} | ||
|  |   explicit format_int(long value) : str_(format_signed(value)) {} | ||
|  |   explicit format_int(long long value) : str_(format_signed(value)) {} | ||
|  |   explicit format_int(unsigned value) : str_(format_unsigned(value)) {} | ||
|  |   explicit format_int(unsigned long value) : str_(format_unsigned(value)) {} | ||
|  |   explicit format_int(unsigned long long value) | ||
|  |       : str_(format_unsigned(value)) {} | ||
|  | 
 | ||
|  |   /** Returns the number of characters written to the output buffer. */ | ||
|  |   auto size() const -> size_t { | ||
|  |     return detail::to_unsigned(buffer_ - str_ + buffer_size - 1); | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |     Returns a pointer to the output buffer content. No terminating null | ||
|  |     character is appended. | ||
|  |    */ | ||
|  |   auto data() const -> const char* { return str_; } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |     Returns a pointer to the output buffer content with terminating null | ||
|  |     character appended. | ||
|  |    */ | ||
|  |   auto c_str() const -> const char* { | ||
|  |     buffer_[buffer_size - 1] = '\0'; | ||
|  |     return str_; | ||
|  |   } | ||
|  | 
 | ||
|  |   /**
 | ||
|  |     \rst | ||
|  |     Returns the content of the output buffer as an ``std::string``. | ||
|  |     \endrst | ||
|  |    */ | ||
|  |   auto str() const -> std::string { return std::string(str_, size()); } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T, typename Char> | ||
|  | struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>> | ||
|  |     : formatter<detail::format_as_t<T>, Char> { | ||
|  |   template <typename FormatContext> | ||
|  |   auto format(const T& value, FormatContext& ctx) const -> decltype(ctx.out()) { | ||
|  |     using base = formatter<detail::format_as_t<T>, Char>; | ||
|  |     return base::format(format_as(value), ctx); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | #define FMT_FORMAT_AS(Type, Base) \
 | ||
|  |   template <typename Char>        \ | ||
|  |   struct formatter<Type, Char> : formatter<Base, Char> {} | ||
|  | 
 | ||
|  | FMT_FORMAT_AS(signed char, int); | ||
|  | FMT_FORMAT_AS(unsigned char, unsigned); | ||
|  | FMT_FORMAT_AS(short, int); | ||
|  | FMT_FORMAT_AS(unsigned short, unsigned); | ||
|  | FMT_FORMAT_AS(long, detail::long_type); | ||
|  | FMT_FORMAT_AS(unsigned long, detail::ulong_type); | ||
|  | FMT_FORMAT_AS(Char*, const Char*); | ||
|  | FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>); | ||
|  | FMT_FORMAT_AS(std::nullptr_t, const void*); | ||
|  | FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>); | ||
|  | FMT_FORMAT_AS(void*, const void*); | ||
|  | 
 | ||
|  | template <typename Char, size_t N> | ||
|  | struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {}; | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   Converts ``p`` to ``const void*`` for pointer formatting. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |     auto s = fmt::format("{}", fmt::ptr(p)); | ||
|  |   \endrst | ||
|  |  */ | ||
|  | template <typename T> auto ptr(T p) -> const void* { | ||
|  |   static_assert(std::is_pointer<T>::value, ""); | ||
|  |   return detail::bit_cast<const void*>(p); | ||
|  | } | ||
|  | template <typename T, typename Deleter> | ||
|  | auto ptr(const std::unique_ptr<T, Deleter>& p) -> const void* { | ||
|  |   return p.get(); | ||
|  | } | ||
|  | template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* { | ||
|  |   return p.get(); | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   Converts ``e`` to the underlying type. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |     enum class color { red, green, blue }; | ||
|  |     auto s = fmt::format("{}", fmt::underlying(color::red)); | ||
|  |   \endrst | ||
|  |  */ | ||
|  | template <typename Enum> | ||
|  | constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> { | ||
|  |   return static_cast<underlying_t<Enum>>(e); | ||
|  | } | ||
|  | 
 | ||
|  | namespace enums { | ||
|  | template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)> | ||
|  | constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> { | ||
|  |   return static_cast<underlying_t<Enum>>(e); | ||
|  | } | ||
|  | }  // namespace enums
 | ||
|  | 
 | ||
|  | class bytes { | ||
|  |  private: | ||
|  |   string_view data_; | ||
|  |   friend struct formatter<bytes>; | ||
|  | 
 | ||
|  |  public: | ||
|  |   explicit bytes(string_view data) : data_(data) {} | ||
|  | }; | ||
|  | 
 | ||
|  | template <> struct formatter<bytes> { | ||
|  |  private: | ||
|  |   detail::dynamic_format_specs<> specs_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   template <typename ParseContext> | ||
|  |   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* { | ||
|  |     return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, | ||
|  |                               detail::type::string_type); | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename FormatContext> | ||
|  |   auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) { | ||
|  |     detail::handle_dynamic_spec<detail::width_checker>(specs_.width, | ||
|  |                                                        specs_.width_ref, ctx); | ||
|  |     detail::handle_dynamic_spec<detail::precision_checker>( | ||
|  |         specs_.precision, specs_.precision_ref, ctx); | ||
|  |     return detail::write_bytes(ctx.out(), b.data_, specs_); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // group_digits_view is not derived from view because it copies the argument.
 | ||
|  | template <typename T> struct group_digits_view { | ||
|  |   T value; | ||
|  | }; | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   Returns a view that formats an integer value using ',' as a locale-independent | ||
|  |   thousands separator. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |     fmt::print("{}", fmt::group_digits(12345)); | ||
|  |     // Output: "12,345"
 | ||
|  |   \endrst | ||
|  |  */ | ||
|  | template <typename T> auto group_digits(T value) -> group_digits_view<T> { | ||
|  |   return {value}; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> struct formatter<group_digits_view<T>> : formatter<T> { | ||
|  |  private: | ||
|  |   detail::dynamic_format_specs<> specs_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   template <typename ParseContext> | ||
|  |   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* { | ||
|  |     return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, | ||
|  |                               detail::type::int_type); | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename FormatContext> | ||
|  |   auto format(group_digits_view<T> t, FormatContext& ctx) | ||
|  |       -> decltype(ctx.out()) { | ||
|  |     detail::handle_dynamic_spec<detail::width_checker>(specs_.width, | ||
|  |                                                        specs_.width_ref, ctx); | ||
|  |     detail::handle_dynamic_spec<detail::precision_checker>( | ||
|  |         specs_.precision, specs_.precision_ref, ctx); | ||
|  |     return detail::write_int( | ||
|  |         ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_, | ||
|  |         detail::digit_grouping<char>("\3", ",")); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T> struct nested_view { | ||
|  |   const formatter<T>* fmt; | ||
|  |   const T* value; | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T> struct formatter<nested_view<T>> { | ||
|  |   FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* { | ||
|  |     return ctx.begin(); | ||
|  |   } | ||
|  |   auto format(nested_view<T> view, format_context& ctx) const | ||
|  |       -> decltype(ctx.out()) { | ||
|  |     return view.fmt->format(*view.value, ctx); | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename T> struct nested_formatter { | ||
|  |  private: | ||
|  |   int width_; | ||
|  |   detail::fill_t<char> fill_; | ||
|  |   align_t align_ : 4; | ||
|  |   formatter<T> formatter_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   constexpr nested_formatter() : width_(0), align_(align_t::none) {} | ||
|  | 
 | ||
|  |   FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* { | ||
|  |     auto specs = detail::dynamic_format_specs<char>(); | ||
|  |     auto it = parse_format_specs(ctx.begin(), ctx.end(), specs, ctx, | ||
|  |                                  detail::type::none_type); | ||
|  |     width_ = specs.width; | ||
|  |     fill_ = specs.fill; | ||
|  |     align_ = specs.align; | ||
|  |     ctx.advance_to(it); | ||
|  |     return formatter_.parse(ctx); | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename F> | ||
|  |   auto write_padded(format_context& ctx, F write) const -> decltype(ctx.out()) { | ||
|  |     if (width_ == 0) return write(ctx.out()); | ||
|  |     auto buf = memory_buffer(); | ||
|  |     write(std::back_inserter(buf)); | ||
|  |     auto specs = format_specs<>(); | ||
|  |     specs.width = width_; | ||
|  |     specs.fill = fill_; | ||
|  |     specs.align = align_; | ||
|  |     return detail::write(ctx.out(), string_view(buf.data(), buf.size()), specs); | ||
|  |   } | ||
|  | 
 | ||
|  |   auto nested(const T& value) const -> nested_view<T> { | ||
|  |     return nested_view<T>{&formatter_, &value}; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | // DEPRECATED! join_view will be moved to ranges.h.
 | ||
|  | template <typename It, typename Sentinel, typename Char = char> | ||
|  | struct join_view : detail::view { | ||
|  |   It begin; | ||
|  |   Sentinel end; | ||
|  |   basic_string_view<Char> sep; | ||
|  | 
 | ||
|  |   join_view(It b, Sentinel e, basic_string_view<Char> s) | ||
|  |       : begin(b), end(e), sep(s) {} | ||
|  | }; | ||
|  | 
 | ||
|  | template <typename It, typename Sentinel, typename Char> | ||
|  | struct formatter<join_view<It, Sentinel, Char>, Char> { | ||
|  |  private: | ||
|  |   using value_type = | ||
|  | #ifdef __cpp_lib_ranges
 | ||
|  |       std::iter_value_t<It>; | ||
|  | #else
 | ||
|  |       typename std::iterator_traits<It>::value_type; | ||
|  | #endif
 | ||
|  |   formatter<remove_cvref_t<value_type>, Char> value_formatter_; | ||
|  | 
 | ||
|  |  public: | ||
|  |   template <typename ParseContext> | ||
|  |   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* { | ||
|  |     return value_formatter_.parse(ctx); | ||
|  |   } | ||
|  | 
 | ||
|  |   template <typename FormatContext> | ||
|  |   auto format(const join_view<It, Sentinel, Char>& value, | ||
|  |               FormatContext& ctx) const -> decltype(ctx.out()) { | ||
|  |     auto it = value.begin; | ||
|  |     auto out = ctx.out(); | ||
|  |     if (it != value.end) { | ||
|  |       out = value_formatter_.format(*it, ctx); | ||
|  |       ++it; | ||
|  |       while (it != value.end) { | ||
|  |         out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out); | ||
|  |         ctx.advance_to(out); | ||
|  |         out = value_formatter_.format(*it, ctx); | ||
|  |         ++it; | ||
|  |       } | ||
|  |     } | ||
|  |     return out; | ||
|  |   } | ||
|  | }; | ||
|  | 
 | ||
|  | /**
 | ||
|  |   Returns a view that formats the iterator range `[begin, end)` with elements | ||
|  |   separated by `sep`. | ||
|  |  */ | ||
|  | template <typename It, typename Sentinel> | ||
|  | auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> { | ||
|  |   return {begin, end, sep}; | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   Returns a view that formats `range` with elements separated by `sep`. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |     std::vector<int> v = {1, 2, 3}; | ||
|  |     fmt::print("{}", fmt::join(v, ", ")); | ||
|  |     // Output: "1, 2, 3"
 | ||
|  | 
 | ||
|  |   ``fmt::join`` applies passed format specifiers to the range elements:: | ||
|  | 
 | ||
|  |     fmt::print("{:02}", fmt::join(v, ", ")); | ||
|  |     // Output: "01, 02, 03"
 | ||
|  |   \endrst | ||
|  |  */ | ||
|  | template <typename Range> | ||
|  | auto join(Range&& range, string_view sep) | ||
|  |     -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> { | ||
|  |   return join(std::begin(range), std::end(range), sep); | ||
|  | } | ||
|  | 
 | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   Converts *value* to ``std::string`` using the default format for type *T*. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |     #include <fmt/format.h>
 | ||
|  | 
 | ||
|  |     std::string answer = fmt::to_string(42); | ||
|  |   \endrst | ||
|  |  */ | ||
|  | template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value && | ||
|  |                                     !detail::has_format_as<T>::value)> | ||
|  | inline auto to_string(const T& value) -> std::string { | ||
|  |   auto buffer = memory_buffer(); | ||
|  |   detail::write<char>(appender(buffer), value); | ||
|  |   return {buffer.data(), buffer.size()}; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)> | ||
|  | FMT_NODISCARD inline auto to_string(T value) -> std::string { | ||
|  |   // The buffer should be large enough to store the number including the sign
 | ||
|  |   // or "false" for bool.
 | ||
|  |   constexpr int max_size = detail::digits10<T>() + 2; | ||
|  |   char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5]; | ||
|  |   char* begin = buffer; | ||
|  |   return std::string(begin, detail::write<char>(begin, value)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Char, size_t SIZE> | ||
|  | FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf) | ||
|  |     -> std::basic_string<Char> { | ||
|  |   auto size = buf.size(); | ||
|  |   detail::assume(size < std::basic_string<Char>().max_size()); | ||
|  |   return std::basic_string<Char>(buf.data(), size); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value && | ||
|  |                                     detail::has_format_as<T>::value)> | ||
|  | inline auto to_string(const T& value) -> std::string { | ||
|  |   return to_string(format_as(value)); | ||
|  | } | ||
|  | 
 | ||
|  | FMT_END_EXPORT | ||
|  | 
 | ||
|  | namespace detail { | ||
|  | 
 | ||
|  | template <typename Char> | ||
|  | void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt, | ||
|  |                 typename vformat_args<Char>::type args, locale_ref loc) { | ||
|  |   auto out = buffer_appender<Char>(buf); | ||
|  |   if (fmt.size() == 2 && equal2(fmt.data(), "{}")) { | ||
|  |     auto arg = args.get(0); | ||
|  |     if (!arg) throw_format_error("argument not found"); | ||
|  |     visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   struct format_handler : error_handler { | ||
|  |     basic_format_parse_context<Char> parse_context; | ||
|  |     buffer_context<Char> context; | ||
|  | 
 | ||
|  |     format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str, | ||
|  |                    basic_format_args<buffer_context<Char>> p_args, | ||
|  |                    locale_ref p_loc) | ||
|  |         : parse_context(str), context(p_out, p_args, p_loc) {} | ||
|  | 
 | ||
|  |     void on_text(const Char* begin, const Char* end) { | ||
|  |       auto text = basic_string_view<Char>(begin, to_unsigned(end - begin)); | ||
|  |       context.advance_to(write<Char>(context.out(), text)); | ||
|  |     } | ||
|  | 
 | ||
|  |     FMT_CONSTEXPR auto on_arg_id() -> int { | ||
|  |       return parse_context.next_arg_id(); | ||
|  |     } | ||
|  |     FMT_CONSTEXPR auto on_arg_id(int id) -> int { | ||
|  |       return parse_context.check_arg_id(id), id; | ||
|  |     } | ||
|  |     FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int { | ||
|  |       int arg_id = context.arg_id(id); | ||
|  |       if (arg_id < 0) throw_format_error("argument not found"); | ||
|  |       return arg_id; | ||
|  |     } | ||
|  | 
 | ||
|  |     FMT_INLINE void on_replacement_field(int id, const Char*) { | ||
|  |       auto arg = get_arg(context, id); | ||
|  |       context.advance_to(visit_format_arg( | ||
|  |           default_arg_formatter<Char>{context.out(), context.args(), | ||
|  |                                       context.locale()}, | ||
|  |           arg)); | ||
|  |     } | ||
|  | 
 | ||
|  |     auto on_format_specs(int id, const Char* begin, const Char* end) | ||
|  |         -> const Char* { | ||
|  |       auto arg = get_arg(context, id); | ||
|  |       // Not using a visitor for custom types gives better codegen.
 | ||
|  |       if (arg.format_custom(begin, parse_context, context)) | ||
|  |         return parse_context.begin(); | ||
|  |       auto specs = detail::dynamic_format_specs<Char>(); | ||
|  |       begin = parse_format_specs(begin, end, specs, parse_context, arg.type()); | ||
|  |       detail::handle_dynamic_spec<detail::width_checker>( | ||
|  |           specs.width, specs.width_ref, context); | ||
|  |       detail::handle_dynamic_spec<detail::precision_checker>( | ||
|  |           specs.precision, specs.precision_ref, context); | ||
|  |       if (begin == end || *begin != '}') | ||
|  |         throw_format_error("missing '}' in format string"); | ||
|  |       auto f = arg_formatter<Char>{context.out(), specs, context.locale()}; | ||
|  |       context.advance_to(visit_format_arg(f, arg)); | ||
|  |       return begin; | ||
|  |     } | ||
|  |   }; | ||
|  |   detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc)); | ||
|  | } | ||
|  | 
 | ||
|  | FMT_BEGIN_EXPORT | ||
|  | 
 | ||
|  | #ifndef FMT_HEADER_ONLY
 | ||
|  | extern template FMT_API void vformat_to(buffer<char>&, string_view, | ||
|  |                                         typename vformat_args<>::type, | ||
|  |                                         locale_ref); | ||
|  | extern template FMT_API auto thousands_sep_impl<char>(locale_ref) | ||
|  |     -> thousands_sep_result<char>; | ||
|  | extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref) | ||
|  |     -> thousands_sep_result<wchar_t>; | ||
|  | extern template FMT_API auto decimal_point_impl(locale_ref) -> char; | ||
|  | extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t; | ||
|  | #endif  // FMT_HEADER_ONLY
 | ||
|  | 
 | ||
|  | }  // namespace detail
 | ||
|  | 
 | ||
|  | #if FMT_USE_USER_DEFINED_LITERALS
 | ||
|  | inline namespace literals { | ||
|  | /**
 | ||
|  |   \rst | ||
|  |   User-defined literal equivalent of :func:`fmt::arg`. | ||
|  | 
 | ||
|  |   **Example**:: | ||
|  | 
 | ||
|  |     using namespace fmt::literals; | ||
|  |     fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23); | ||
|  |   \endrst | ||
|  |  */ | ||
|  | #  if FMT_USE_NONTYPE_TEMPLATE_ARGS
 | ||
|  | template <detail_exported::fixed_string Str> constexpr auto operator""_a() { | ||
|  |   using char_t = remove_cvref_t<decltype(Str.data[0])>; | ||
|  |   return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>(); | ||
|  | } | ||
|  | #  else
 | ||
|  | constexpr auto operator""_a(const char* s, size_t) -> detail::udl_arg<char> { | ||
|  |   return {s}; | ||
|  | } | ||
|  | #  endif
 | ||
|  | }  // namespace literals
 | ||
|  | #endif  // FMT_USE_USER_DEFINED_LITERALS
 | ||
|  | 
 | ||
|  | template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)> | ||
|  | inline auto vformat(const Locale& loc, string_view fmt, format_args args) | ||
|  |     -> std::string { | ||
|  |   return detail::vformat(loc, fmt, args); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Locale, typename... T, | ||
|  |           FMT_ENABLE_IF(detail::is_locale<Locale>::value)> | ||
|  | inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args) | ||
|  |     -> std::string { | ||
|  |   return fmt::vformat(loc, string_view(fmt), fmt::make_format_args(args...)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt, typename Locale, | ||
|  |           FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&& | ||
|  |                             detail::is_locale<Locale>::value)> | ||
|  | auto vformat_to(OutputIt out, const Locale& loc, string_view fmt, | ||
|  |                 format_args args) -> OutputIt { | ||
|  |   using detail::get_buffer; | ||
|  |   auto&& buf = get_buffer<char>(out); | ||
|  |   detail::vformat_to(buf, fmt, args, detail::locale_ref(loc)); | ||
|  |   return detail::get_iterator(buf, out); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename OutputIt, typename Locale, typename... T, | ||
|  |           FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&& | ||
|  |                             detail::is_locale<Locale>::value)> | ||
|  | FMT_INLINE auto format_to(OutputIt out, const Locale& loc, | ||
|  |                           format_string<T...> fmt, T&&... args) -> OutputIt { | ||
|  |   return vformat_to(out, loc, fmt, fmt::make_format_args(args...)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename Locale, typename... T, | ||
|  |           FMT_ENABLE_IF(detail::is_locale<Locale>::value)> | ||
|  | FMT_NODISCARD FMT_INLINE auto formatted_size(const Locale& loc, | ||
|  |                                              format_string<T...> fmt, | ||
|  |                                              T&&... args) -> size_t { | ||
|  |   auto buf = detail::counting_buffer<>(); | ||
|  |   detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...), | ||
|  |                            detail::locale_ref(loc)); | ||
|  |   return buf.count(); | ||
|  | } | ||
|  | 
 | ||
|  | FMT_END_EXPORT | ||
|  | 
 | ||
|  | template <typename T, typename Char> | ||
|  | template <typename FormatContext> | ||
|  | FMT_CONSTEXPR FMT_INLINE auto | ||
|  | formatter<T, Char, | ||
|  |           enable_if_t<detail::type_constant<T, Char>::value != | ||
|  |                       detail::type::custom_type>>::format(const T& val, | ||
|  |                                                           FormatContext& ctx) | ||
|  |     const -> decltype(ctx.out()) { | ||
|  |   if (specs_.width_ref.kind == detail::arg_id_kind::none && | ||
|  |       specs_.precision_ref.kind == detail::arg_id_kind::none) { | ||
|  |     return detail::write<Char>(ctx.out(), val, specs_, ctx.locale()); | ||
|  |   } | ||
|  |   auto specs = specs_; | ||
|  |   detail::handle_dynamic_spec<detail::width_checker>(specs.width, | ||
|  |                                                      specs.width_ref, ctx); | ||
|  |   detail::handle_dynamic_spec<detail::precision_checker>( | ||
|  |       specs.precision, specs.precision_ref, ctx); | ||
|  |   return detail::write<Char>(ctx.out(), val, specs, ctx.locale()); | ||
|  | } | ||
|  | 
 | ||
|  | FMT_END_NAMESPACE | ||
|  | 
 | ||
|  | #ifdef FMT_HEADER_ONLY
 | ||
|  | #  define FMT_FUNC inline
 | ||
|  | #  include "format-inl.h"
 | ||
|  | #else
 | ||
|  | #  define FMT_FUNC
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #endif  // FMT_FORMAT_H_
 |