4536 lines
		
	
	
		
			161 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4536 lines
		
	
	
		
			161 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
|   Formatting library for C++
 | |
| 
 | |
|   Copyright (c) 2012 - present, Victor Zverovich
 | |
| 
 | |
|   Permission is hereby granted, free of charge, to any person obtaining
 | |
|   a copy of this software and associated documentation files (the
 | |
|   "Software"), to deal in the Software without restriction, including
 | |
|   without limitation the rights to use, copy, modify, merge, publish,
 | |
|   distribute, sublicense, and/or sell copies of the Software, and to
 | |
|   permit persons to whom the Software is furnished to do so, subject to
 | |
|   the following conditions:
 | |
| 
 | |
|   The above copyright notice and this permission notice shall be
 | |
|   included in all copies or substantial portions of the Software.
 | |
| 
 | |
|   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|   NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 | |
|   LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 | |
|   OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 | |
|   WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| 
 | |
|   --- Optional exception to the license ---
 | |
| 
 | |
|   As an exception, if, as a result of your compiling your source code, portions
 | |
|   of this Software are embedded into a machine-executable object form of such
 | |
|   source code, you may redistribute such embedded portions in such object form
 | |
|   without including the above copyright and permission notices.
 | |
|  */
 | |
| 
 | |
| #ifndef FMT_FORMAT_H_
 | |
| #define FMT_FORMAT_H_
 | |
| 
 | |
| #include <cmath>             // std::signbit
 | |
| #include <cstdint>           // uint32_t
 | |
| #include <cstring>           // std::memcpy
 | |
| #include <initializer_list>  // std::initializer_list
 | |
| #include <limits>            // std::numeric_limits
 | |
| #include <memory>            // std::uninitialized_copy
 | |
| #include <stdexcept>         // std::runtime_error
 | |
| #include <system_error>      // std::system_error
 | |
| 
 | |
| #ifdef __cpp_lib_bit_cast
 | |
| #  include <bit>  // std::bit_cast
 | |
| #endif
 | |
| 
 | |
| #include "core.h"
 | |
| 
 | |
| #if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
 | |
| #  define FMT_INLINE_VARIABLE inline
 | |
| #else
 | |
| #  define FMT_INLINE_VARIABLE
 | |
| #endif
 | |
| 
 | |
| #if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
 | |
| #  define FMT_FALLTHROUGH [[fallthrough]]
 | |
| #elif defined(__clang__)
 | |
| #  define FMT_FALLTHROUGH [[clang::fallthrough]]
 | |
| #elif FMT_GCC_VERSION >= 700 && \
 | |
|     (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
 | |
| #  define FMT_FALLTHROUGH [[gnu::fallthrough]]
 | |
| #else
 | |
| #  define FMT_FALLTHROUGH
 | |
| #endif
 | |
| 
 | |
| #ifndef FMT_DEPRECATED
 | |
| #  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VERSION >= 1900
 | |
| #    define FMT_DEPRECATED [[deprecated]]
 | |
| #  else
 | |
| #    if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
 | |
| #      define FMT_DEPRECATED __attribute__((deprecated))
 | |
| #    elif FMT_MSC_VERSION
 | |
| #      define FMT_DEPRECATED __declspec(deprecated)
 | |
| #    else
 | |
| #      define FMT_DEPRECATED /* deprecated */
 | |
| #    endif
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #ifndef FMT_NO_UNIQUE_ADDRESS
 | |
| #  if FMT_CPLUSPLUS >= 202002L
 | |
| #    if FMT_HAS_CPP_ATTRIBUTE(no_unique_address)
 | |
| #      define FMT_NO_UNIQUE_ADDRESS [[no_unique_address]]
 | |
| // VS2019 v16.10 and later except clang-cl (https://reviews.llvm.org/D110485)
 | |
| #    elif (FMT_MSC_VERSION >= 1929) && !FMT_CLANG_VERSION
 | |
| #      define FMT_NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
 | |
| #    endif
 | |
| #  endif
 | |
| #endif
 | |
| #ifndef FMT_NO_UNIQUE_ADDRESS
 | |
| #  define FMT_NO_UNIQUE_ADDRESS
 | |
| #endif
 | |
| 
 | |
| // Visibility when compiled as a shared library/object.
 | |
| #if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
 | |
| #  define FMT_SO_VISIBILITY(value) FMT_VISIBILITY(value)
 | |
| #else
 | |
| #  define FMT_SO_VISIBILITY(value)
 | |
| #endif
 | |
| 
 | |
| #ifdef __has_builtin
 | |
| #  define FMT_HAS_BUILTIN(x) __has_builtin(x)
 | |
| #else
 | |
| #  define FMT_HAS_BUILTIN(x) 0
 | |
| #endif
 | |
| 
 | |
| #if FMT_GCC_VERSION || FMT_CLANG_VERSION
 | |
| #  define FMT_NOINLINE __attribute__((noinline))
 | |
| #else
 | |
| #  define FMT_NOINLINE
 | |
| #endif
 | |
| 
 | |
| #ifndef FMT_THROW
 | |
| #  if FMT_EXCEPTIONS
 | |
| #    if FMT_MSC_VERSION || defined(__NVCC__)
 | |
| FMT_BEGIN_NAMESPACE
 | |
| namespace detail {
 | |
| template <typename Exception> inline void do_throw(const Exception& x) {
 | |
|   // Silence unreachable code warnings in MSVC and NVCC because these
 | |
|   // are nearly impossible to fix in a generic code.
 | |
|   volatile bool b = true;
 | |
|   if (b) throw x;
 | |
| }
 | |
| }  // namespace detail
 | |
| FMT_END_NAMESPACE
 | |
| #      define FMT_THROW(x) detail::do_throw(x)
 | |
| #    else
 | |
| #      define FMT_THROW(x) throw x
 | |
| #    endif
 | |
| #  else
 | |
| #    define FMT_THROW(x) \
 | |
|       ::fmt::detail::assert_fail(__FILE__, __LINE__, (x).what())
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #if FMT_EXCEPTIONS
 | |
| #  define FMT_TRY try
 | |
| #  define FMT_CATCH(x) catch (x)
 | |
| #else
 | |
| #  define FMT_TRY if (true)
 | |
| #  define FMT_CATCH(x) if (false)
 | |
| #endif
 | |
| 
 | |
| #ifndef FMT_MAYBE_UNUSED
 | |
| #  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
 | |
| #    define FMT_MAYBE_UNUSED [[maybe_unused]]
 | |
| #  else
 | |
| #    define FMT_MAYBE_UNUSED
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #ifndef FMT_USE_USER_DEFINED_LITERALS
 | |
| // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
 | |
| //
 | |
| // GCC before 4.9 requires a space in `operator"" _a` which is invalid in later
 | |
| // compiler versions.
 | |
| #  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 409 || \
 | |
|        FMT_MSC_VERSION >= 1900) &&                                     \
 | |
|       (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
 | |
| #    define FMT_USE_USER_DEFINED_LITERALS 1
 | |
| #  else
 | |
| #    define FMT_USE_USER_DEFINED_LITERALS 0
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
 | |
| // integer formatter template instantiations to just one by only using the
 | |
| // largest integer type. This results in a reduction in binary size but will
 | |
| // cause a decrease in integer formatting performance.
 | |
| #if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
 | |
| #  define FMT_REDUCE_INT_INSTANTIATIONS 0
 | |
| #endif
 | |
| 
 | |
| // __builtin_clz is broken in clang with Microsoft CodeGen:
 | |
| // https://github.com/fmtlib/fmt/issues/519.
 | |
| #if !FMT_MSC_VERSION
 | |
| #  if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
 | |
| #    define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
 | |
| #  endif
 | |
| #  if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
 | |
| #    define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| // __builtin_ctz is broken in Intel Compiler Classic on Windows:
 | |
| // https://github.com/fmtlib/fmt/issues/2510.
 | |
| #ifndef __ICL
 | |
| #  if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \
 | |
|       defined(__NVCOMPILER)
 | |
| #    define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
 | |
| #  endif
 | |
| #  if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \
 | |
|       FMT_ICC_VERSION || defined(__NVCOMPILER)
 | |
| #    define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #if FMT_MSC_VERSION
 | |
| #  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128
 | |
| #endif
 | |
| 
 | |
| // Some compilers masquerade as both MSVC and GCC-likes or otherwise support
 | |
| // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
 | |
| // MSVC intrinsics if the clz and clzll builtins are not available.
 | |
| #if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \
 | |
|     !defined(FMT_BUILTIN_CTZLL)
 | |
| FMT_BEGIN_NAMESPACE
 | |
| namespace detail {
 | |
| // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
 | |
| #  if !defined(__clang__)
 | |
| #    pragma intrinsic(_BitScanForward)
 | |
| #    pragma intrinsic(_BitScanReverse)
 | |
| #    if defined(_WIN64)
 | |
| #      pragma intrinsic(_BitScanForward64)
 | |
| #      pragma intrinsic(_BitScanReverse64)
 | |
| #    endif
 | |
| #  endif
 | |
| 
 | |
| inline auto clz(uint32_t x) -> int {
 | |
|   unsigned long r = 0;
 | |
|   _BitScanReverse(&r, x);
 | |
|   FMT_ASSERT(x != 0, "");
 | |
|   // Static analysis complains about using uninitialized data
 | |
|   // "r", but the only way that can happen is if "x" is 0,
 | |
|   // which the callers guarantee to not happen.
 | |
|   FMT_MSC_WARNING(suppress : 6102)
 | |
|   return 31 ^ static_cast<int>(r);
 | |
| }
 | |
| #  define FMT_BUILTIN_CLZ(n) detail::clz(n)
 | |
| 
 | |
| inline auto clzll(uint64_t x) -> int {
 | |
|   unsigned long r = 0;
 | |
| #  ifdef _WIN64
 | |
|   _BitScanReverse64(&r, x);
 | |
| #  else
 | |
|   // Scan the high 32 bits.
 | |
|   if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
 | |
|     return 63 ^ static_cast<int>(r + 32);
 | |
|   // Scan the low 32 bits.
 | |
|   _BitScanReverse(&r, static_cast<uint32_t>(x));
 | |
| #  endif
 | |
|   FMT_ASSERT(x != 0, "");
 | |
|   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
 | |
|   return 63 ^ static_cast<int>(r);
 | |
| }
 | |
| #  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
 | |
| 
 | |
| inline auto ctz(uint32_t x) -> int {
 | |
|   unsigned long r = 0;
 | |
|   _BitScanForward(&r, x);
 | |
|   FMT_ASSERT(x != 0, "");
 | |
|   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
 | |
|   return static_cast<int>(r);
 | |
| }
 | |
| #  define FMT_BUILTIN_CTZ(n) detail::ctz(n)
 | |
| 
 | |
| inline auto ctzll(uint64_t x) -> int {
 | |
|   unsigned long r = 0;
 | |
|   FMT_ASSERT(x != 0, "");
 | |
|   FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
 | |
| #  ifdef _WIN64
 | |
|   _BitScanForward64(&r, x);
 | |
| #  else
 | |
|   // Scan the low 32 bits.
 | |
|   if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
 | |
|   // Scan the high 32 bits.
 | |
|   _BitScanForward(&r, static_cast<uint32_t>(x >> 32));
 | |
|   r += 32;
 | |
| #  endif
 | |
|   return static_cast<int>(r);
 | |
| }
 | |
| #  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
 | |
| }  // namespace detail
 | |
| FMT_END_NAMESPACE
 | |
| #endif
 | |
| 
 | |
| FMT_BEGIN_NAMESPACE
 | |
| namespace detail {
 | |
| 
 | |
| FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
 | |
|   ignore_unused(condition);
 | |
| #ifdef FMT_FUZZ
 | |
|   if (condition) throw std::runtime_error("fuzzing limit reached");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| template <typename CharT, CharT... C> struct string_literal {
 | |
|   static constexpr CharT value[sizeof...(C)] = {C...};
 | |
|   constexpr operator basic_string_view<CharT>() const {
 | |
|     return {value, sizeof...(C)};
 | |
|   }
 | |
| };
 | |
| 
 | |
| #if FMT_CPLUSPLUS < 201703L
 | |
| template <typename CharT, CharT... C>
 | |
| constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)];
 | |
| #endif
 | |
| 
 | |
| // Implementation of std::bit_cast for pre-C++20.
 | |
| template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
 | |
| FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
 | |
| #ifdef __cpp_lib_bit_cast
 | |
|   if (is_constant_evaluated()) return std::bit_cast<To>(from);
 | |
| #endif
 | |
|   auto to = To();
 | |
|   // The cast suppresses a bogus -Wclass-memaccess on GCC.
 | |
|   std::memcpy(static_cast<void*>(&to), &from, sizeof(to));
 | |
|   return to;
 | |
| }
 | |
| 
 | |
| inline auto is_big_endian() -> bool {
 | |
| #ifdef _WIN32
 | |
|   return false;
 | |
| #elif defined(__BIG_ENDIAN__)
 | |
|   return true;
 | |
| #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
 | |
|   return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
 | |
| #else
 | |
|   struct bytes {
 | |
|     char data[sizeof(int)];
 | |
|   };
 | |
|   return bit_cast<bytes>(1).data[0] == 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| class uint128_fallback {
 | |
|  private:
 | |
|   uint64_t lo_, hi_;
 | |
| 
 | |
|  public:
 | |
|   constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
 | |
|   constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
 | |
| 
 | |
|   constexpr auto high() const noexcept -> uint64_t { return hi_; }
 | |
|   constexpr auto low() const noexcept -> uint64_t { return lo_; }
 | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
 | |
|   constexpr explicit operator T() const {
 | |
|     return static_cast<T>(lo_);
 | |
|   }
 | |
| 
 | |
|   friend constexpr auto operator==(const uint128_fallback& lhs,
 | |
|                                    const uint128_fallback& rhs) -> bool {
 | |
|     return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_;
 | |
|   }
 | |
|   friend constexpr auto operator!=(const uint128_fallback& lhs,
 | |
|                                    const uint128_fallback& rhs) -> bool {
 | |
|     return !(lhs == rhs);
 | |
|   }
 | |
|   friend constexpr auto operator>(const uint128_fallback& lhs,
 | |
|                                   const uint128_fallback& rhs) -> bool {
 | |
|     return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_;
 | |
|   }
 | |
|   friend constexpr auto operator|(const uint128_fallback& lhs,
 | |
|                                   const uint128_fallback& rhs)
 | |
|       -> uint128_fallback {
 | |
|     return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_};
 | |
|   }
 | |
|   friend constexpr auto operator&(const uint128_fallback& lhs,
 | |
|                                   const uint128_fallback& rhs)
 | |
|       -> uint128_fallback {
 | |
|     return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_};
 | |
|   }
 | |
|   friend constexpr auto operator~(const uint128_fallback& n)
 | |
|       -> uint128_fallback {
 | |
|     return {~n.hi_, ~n.lo_};
 | |
|   }
 | |
|   friend auto operator+(const uint128_fallback& lhs,
 | |
|                         const uint128_fallback& rhs) -> uint128_fallback {
 | |
|     auto result = uint128_fallback(lhs);
 | |
|     result += rhs;
 | |
|     return result;
 | |
|   }
 | |
|   friend auto operator*(const uint128_fallback& lhs, uint32_t rhs)
 | |
|       -> uint128_fallback {
 | |
|     FMT_ASSERT(lhs.hi_ == 0, "");
 | |
|     uint64_t hi = (lhs.lo_ >> 32) * rhs;
 | |
|     uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs;
 | |
|     uint64_t new_lo = (hi << 32) + lo;
 | |
|     return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo};
 | |
|   }
 | |
|   friend auto operator-(const uint128_fallback& lhs, uint64_t rhs)
 | |
|       -> uint128_fallback {
 | |
|     return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs};
 | |
|   }
 | |
|   FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback {
 | |
|     if (shift == 64) return {0, hi_};
 | |
|     if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64);
 | |
|     return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)};
 | |
|   }
 | |
|   FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback {
 | |
|     if (shift == 64) return {lo_, 0};
 | |
|     if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64);
 | |
|     return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)};
 | |
|   }
 | |
|   FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& {
 | |
|     return *this = *this >> shift;
 | |
|   }
 | |
|   FMT_CONSTEXPR void operator+=(uint128_fallback n) {
 | |
|     uint64_t new_lo = lo_ + n.lo_;
 | |
|     uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0);
 | |
|     FMT_ASSERT(new_hi >= hi_, "");
 | |
|     lo_ = new_lo;
 | |
|     hi_ = new_hi;
 | |
|   }
 | |
|   FMT_CONSTEXPR void operator&=(uint128_fallback n) {
 | |
|     lo_ &= n.lo_;
 | |
|     hi_ &= n.hi_;
 | |
|   }
 | |
| 
 | |
|   FMT_CONSTEXPR20 auto operator+=(uint64_t n) noexcept -> uint128_fallback& {
 | |
|     if (is_constant_evaluated()) {
 | |
|       lo_ += n;
 | |
|       hi_ += (lo_ < n ? 1 : 0);
 | |
|       return *this;
 | |
|     }
 | |
| #if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
 | |
|     unsigned long long carry;
 | |
|     lo_ = __builtin_addcll(lo_, n, 0, &carry);
 | |
|     hi_ += carry;
 | |
| #elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
 | |
|     unsigned long long result;
 | |
|     auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
 | |
|     lo_ = result;
 | |
|     hi_ += carry;
 | |
| #elif defined(_MSC_VER) && defined(_M_X64)
 | |
|     auto carry = _addcarry_u64(0, lo_, n, &lo_);
 | |
|     _addcarry_u64(carry, hi_, 0, &hi_);
 | |
| #else
 | |
|     lo_ += n;
 | |
|     hi_ += (lo_ < n ? 1 : 0);
 | |
| #endif
 | |
|     return *this;
 | |
|   }
 | |
| };
 | |
| 
 | |
| using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>;
 | |
| 
 | |
| #ifdef UINTPTR_MAX
 | |
| using uintptr_t = ::uintptr_t;
 | |
| #else
 | |
| using uintptr_t = uint128_t;
 | |
| #endif
 | |
| 
 | |
| // Returns the largest possible value for type T. Same as
 | |
| // std::numeric_limits<T>::max() but shorter and not affected by the max macro.
 | |
| template <typename T> constexpr auto max_value() -> T {
 | |
|   return (std::numeric_limits<T>::max)();
 | |
| }
 | |
| template <typename T> constexpr auto num_bits() -> int {
 | |
|   return std::numeric_limits<T>::digits;
 | |
| }
 | |
| // std::numeric_limits<T>::digits may return 0 for 128-bit ints.
 | |
| template <> constexpr auto num_bits<int128_opt>() -> int { return 128; }
 | |
| template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }
 | |
| 
 | |
| // A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
 | |
| // and 128-bit pointers to uint128_fallback.
 | |
| template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))>
 | |
| inline auto bit_cast(const From& from) -> To {
 | |
|   constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned));
 | |
|   struct data_t {
 | |
|     unsigned value[static_cast<unsigned>(size)];
 | |
|   } data = bit_cast<data_t>(from);
 | |
|   auto result = To();
 | |
|   if (const_check(is_big_endian())) {
 | |
|     for (int i = 0; i < size; ++i)
 | |
|       result = (result << num_bits<unsigned>()) | data.value[i];
 | |
|   } else {
 | |
|     for (int i = size - 1; i >= 0; --i)
 | |
|       result = (result << num_bits<unsigned>()) | data.value[i];
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <typename UInt>
 | |
| FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int {
 | |
|   int lz = 0;
 | |
|   constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1);
 | |
|   for (; (n & msb_mask) == 0; n <<= 1) lz++;
 | |
|   return lz;
 | |
| }
 | |
| 
 | |
| FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int {
 | |
| #ifdef FMT_BUILTIN_CLZ
 | |
|   if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n);
 | |
| #endif
 | |
|   return countl_zero_fallback(n);
 | |
| }
 | |
| 
 | |
| FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int {
 | |
| #ifdef FMT_BUILTIN_CLZLL
 | |
|   if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n);
 | |
| #endif
 | |
|   return countl_zero_fallback(n);
 | |
| }
 | |
| 
 | |
| FMT_INLINE void assume(bool condition) {
 | |
|   (void)condition;
 | |
| #if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
 | |
|   __builtin_assume(condition);
 | |
| #elif FMT_GCC_VERSION
 | |
|   if (!condition) __builtin_unreachable();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // An approximation of iterator_t for pre-C++20 systems.
 | |
| template <typename T>
 | |
| using iterator_t = decltype(std::begin(std::declval<T&>()));
 | |
| template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));
 | |
| 
 | |
| // A workaround for std::string not having mutable data() until C++17.
 | |
| template <typename Char>
 | |
| inline auto get_data(std::basic_string<Char>& s) -> Char* {
 | |
|   return &s[0];
 | |
| }
 | |
| template <typename Container>
 | |
| inline auto get_data(Container& c) -> typename Container::value_type* {
 | |
|   return c.data();
 | |
| }
 | |
| 
 | |
| // Attempts to reserve space for n extra characters in the output range.
 | |
| // Returns a pointer to the reserved range or a reference to it.
 | |
| template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
 | |
| #if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
 | |
| __attribute__((no_sanitize("undefined")))
 | |
| #endif
 | |
| inline auto
 | |
| reserve(std::back_insert_iterator<Container> it, size_t n) ->
 | |
|     typename Container::value_type* {
 | |
|   Container& c = get_container(it);
 | |
|   size_t size = c.size();
 | |
|   c.resize(size + n);
 | |
|   return get_data(c) + size;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
 | |
|   buffer<T>& buf = get_container(it);
 | |
|   buf.try_reserve(buf.size() + n);
 | |
|   return it;
 | |
| }
 | |
| 
 | |
| template <typename Iterator>
 | |
| constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
 | |
|   return it;
 | |
| }
 | |
| 
 | |
| template <typename OutputIt>
 | |
| using reserve_iterator =
 | |
|     remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
 | |
| 
 | |
| template <typename T, typename OutputIt>
 | |
| constexpr auto to_pointer(OutputIt, size_t) -> T* {
 | |
|   return nullptr;
 | |
| }
 | |
| template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
 | |
|   buffer<T>& buf = get_container(it);
 | |
|   auto size = buf.size();
 | |
|   if (buf.capacity() < size + n) return nullptr;
 | |
|   buf.try_resize(size + n);
 | |
|   return buf.data() + size;
 | |
| }
 | |
| 
 | |
| template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
 | |
| inline auto base_iterator(std::back_insert_iterator<Container> it,
 | |
|                           typename Container::value_type*)
 | |
|     -> std::back_insert_iterator<Container> {
 | |
|   return it;
 | |
| }
 | |
| 
 | |
| template <typename Iterator>
 | |
| constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
 | |
|   return it;
 | |
| }
 | |
| 
 | |
| // <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
 | |
| // instead (#1998).
 | |
| template <typename OutputIt, typename Size, typename T>
 | |
| FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
 | |
|     -> OutputIt {
 | |
|   for (Size i = 0; i < count; ++i) *out++ = value;
 | |
|   return out;
 | |
| }
 | |
| template <typename T, typename Size>
 | |
| FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
 | |
|   if (is_constant_evaluated()) {
 | |
|     return fill_n<T*, Size, T>(out, count, value);
 | |
|   }
 | |
|   std::memset(out, value, to_unsigned(count));
 | |
|   return out + count;
 | |
| }
 | |
| 
 | |
| #ifdef __cpp_char8_t
 | |
| using char8_type = char8_t;
 | |
| #else
 | |
| enum char8_type : unsigned char {};
 | |
| #endif
 | |
| 
 | |
| template <typename OutChar, typename InputIt, typename OutputIt>
 | |
| FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
 | |
|                                                   OutputIt out) -> OutputIt {
 | |
|   return copy_str<OutChar>(begin, end, out);
 | |
| }
 | |
| 
 | |
| // A public domain branchless UTF-8 decoder by Christopher Wellons:
 | |
| // https://github.com/skeeto/branchless-utf8
 | |
| /* Decode the next character, c, from s, reporting errors in e.
 | |
|  *
 | |
|  * Since this is a branchless decoder, four bytes will be read from the
 | |
|  * buffer regardless of the actual length of the next character. This
 | |
|  * means the buffer _must_ have at least three bytes of zero padding
 | |
|  * following the end of the data stream.
 | |
|  *
 | |
|  * Errors are reported in e, which will be non-zero if the parsed
 | |
|  * character was somehow invalid: invalid byte sequence, non-canonical
 | |
|  * encoding, or a surrogate half.
 | |
|  *
 | |
|  * The function returns a pointer to the next character. When an error
 | |
|  * occurs, this pointer will be a guess that depends on the particular
 | |
|  * error, but it will always advance at least one byte.
 | |
|  */
 | |
| FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
 | |
|     -> const char* {
 | |
|   constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
 | |
|   constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
 | |
|   constexpr const int shiftc[] = {0, 18, 12, 6, 0};
 | |
|   constexpr const int shifte[] = {0, 6, 4, 2, 0};
 | |
| 
 | |
|   int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4"
 | |
|       [static_cast<unsigned char>(*s) >> 3];
 | |
|   // Compute the pointer to the next character early so that the next
 | |
|   // iteration can start working on the next character. Neither Clang
 | |
|   // nor GCC figure out this reordering on their own.
 | |
|   const char* next = s + len + !len;
 | |
| 
 | |
|   using uchar = unsigned char;
 | |
| 
 | |
|   // Assume a four-byte character and load four bytes. Unused bits are
 | |
|   // shifted out.
 | |
|   *c = uint32_t(uchar(s[0]) & masks[len]) << 18;
 | |
|   *c |= uint32_t(uchar(s[1]) & 0x3f) << 12;
 | |
|   *c |= uint32_t(uchar(s[2]) & 0x3f) << 6;
 | |
|   *c |= uint32_t(uchar(s[3]) & 0x3f) << 0;
 | |
|   *c >>= shiftc[len];
 | |
| 
 | |
|   // Accumulate the various error conditions.
 | |
|   *e = (*c < mins[len]) << 6;       // non-canonical encoding
 | |
|   *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
 | |
|   *e |= (*c > 0x10FFFF) << 8;       // out of range?
 | |
|   *e |= (uchar(s[1]) & 0xc0) >> 2;
 | |
|   *e |= (uchar(s[2]) & 0xc0) >> 4;
 | |
|   *e |= uchar(s[3]) >> 6;
 | |
|   *e ^= 0x2a;  // top two bits of each tail byte correct?
 | |
|   *e >>= shifte[len];
 | |
| 
 | |
|   return next;
 | |
| }
 | |
| 
 | |
| constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t();
 | |
| 
 | |
| // Invokes f(cp, sv) for every code point cp in s with sv being the string view
 | |
| // corresponding to the code point. cp is invalid_code_point on error.
 | |
| template <typename F>
 | |
| FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
 | |
|   auto decode = [f](const char* buf_ptr, const char* ptr) {
 | |
|     auto cp = uint32_t();
 | |
|     auto error = 0;
 | |
|     auto end = utf8_decode(buf_ptr, &cp, &error);
 | |
|     bool result = f(error ? invalid_code_point : cp,
 | |
|                     string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr)));
 | |
|     return result ? (error ? buf_ptr + 1 : end) : nullptr;
 | |
|   };
 | |
|   auto p = s.data();
 | |
|   const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
 | |
|   if (s.size() >= block_size) {
 | |
|     for (auto end = p + s.size() - block_size + 1; p < end;) {
 | |
|       p = decode(p, p);
 | |
|       if (!p) return;
 | |
|     }
 | |
|   }
 | |
|   if (auto num_chars_left = s.data() + s.size() - p) {
 | |
|     char buf[2 * block_size - 1] = {};
 | |
|     copy_str<char>(p, p + num_chars_left, buf);
 | |
|     const char* buf_ptr = buf;
 | |
|     do {
 | |
|       auto end = decode(buf_ptr, p);
 | |
|       if (!end) return;
 | |
|       p += end - buf_ptr;
 | |
|       buf_ptr = end;
 | |
|     } while (buf_ptr - buf < num_chars_left);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename Char>
 | |
| inline auto compute_width(basic_string_view<Char> s) -> size_t {
 | |
|   return s.size();
 | |
| }
 | |
| 
 | |
| // Computes approximate display width of a UTF-8 string.
 | |
| FMT_CONSTEXPR inline auto compute_width(string_view s) -> size_t {
 | |
|   size_t num_code_points = 0;
 | |
|   // It is not a lambda for compatibility with C++14.
 | |
|   struct count_code_points {
 | |
|     size_t* count;
 | |
|     FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
 | |
|       *count += detail::to_unsigned(
 | |
|           1 +
 | |
|           (cp >= 0x1100 &&
 | |
|            (cp <= 0x115f ||  // Hangul Jamo init. consonants
 | |
|             cp == 0x2329 ||  // LEFT-POINTING ANGLE BRACKET
 | |
|             cp == 0x232a ||  // RIGHT-POINTING ANGLE BRACKET
 | |
|             // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
 | |
|             (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
 | |
|             (cp >= 0xac00 && cp <= 0xd7a3) ||    // Hangul Syllables
 | |
|             (cp >= 0xf900 && cp <= 0xfaff) ||    // CJK Compatibility Ideographs
 | |
|             (cp >= 0xfe10 && cp <= 0xfe19) ||    // Vertical Forms
 | |
|             (cp >= 0xfe30 && cp <= 0xfe6f) ||    // CJK Compatibility Forms
 | |
|             (cp >= 0xff00 && cp <= 0xff60) ||    // Fullwidth Forms
 | |
|             (cp >= 0xffe0 && cp <= 0xffe6) ||    // Fullwidth Forms
 | |
|             (cp >= 0x20000 && cp <= 0x2fffd) ||  // CJK
 | |
|             (cp >= 0x30000 && cp <= 0x3fffd) ||
 | |
|             // Miscellaneous Symbols and Pictographs + Emoticons:
 | |
|             (cp >= 0x1f300 && cp <= 0x1f64f) ||
 | |
|             // Supplemental Symbols and Pictographs:
 | |
|             (cp >= 0x1f900 && cp <= 0x1f9ff))));
 | |
|       return true;
 | |
|     }
 | |
|   };
 | |
|   // We could avoid branches by using utf8_decode directly.
 | |
|   for_each_codepoint(s, count_code_points{&num_code_points});
 | |
|   return num_code_points;
 | |
| }
 | |
| 
 | |
| inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
 | |
|   return compute_width(
 | |
|       string_view(reinterpret_cast<const char*>(s.data()), s.size()));
 | |
| }
 | |
| 
 | |
| template <typename Char>
 | |
| inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
 | |
|   size_t size = s.size();
 | |
|   return n < size ? n : size;
 | |
| }
 | |
| 
 | |
| // Calculates the index of the nth code point in a UTF-8 string.
 | |
| inline auto code_point_index(string_view s, size_t n) -> size_t {
 | |
|   size_t result = s.size();
 | |
|   const char* begin = s.begin();
 | |
|   for_each_codepoint(s, [begin, &n, &result](uint32_t, string_view sv) {
 | |
|     if (n != 0) {
 | |
|       --n;
 | |
|       return true;
 | |
|     }
 | |
|     result = to_unsigned(sv.begin() - begin);
 | |
|     return false;
 | |
|   });
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
 | |
|     -> size_t {
 | |
|   return code_point_index(
 | |
|       string_view(reinterpret_cast<const char*>(s.data()), s.size()), n);
 | |
| }
 | |
| 
 | |
| template <typename T> struct is_integral : std::is_integral<T> {};
 | |
| template <> struct is_integral<int128_opt> : std::true_type {};
 | |
| template <> struct is_integral<uint128_t> : std::true_type {};
 | |
| 
 | |
| template <typename T>
 | |
| using is_signed =
 | |
|     std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
 | |
|                                      std::is_same<T, int128_opt>::value>;
 | |
| 
 | |
| template <typename T>
 | |
| using is_integer =
 | |
|     bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
 | |
|                   !std::is_same<T, char>::value &&
 | |
|                   !std::is_same<T, wchar_t>::value>;
 | |
| 
 | |
| #ifndef FMT_USE_FLOAT
 | |
| #  define FMT_USE_FLOAT 1
 | |
| #endif
 | |
| #ifndef FMT_USE_DOUBLE
 | |
| #  define FMT_USE_DOUBLE 1
 | |
| #endif
 | |
| #ifndef FMT_USE_LONG_DOUBLE
 | |
| #  define FMT_USE_LONG_DOUBLE 1
 | |
| #endif
 | |
| 
 | |
| #ifndef FMT_USE_FLOAT128
 | |
| #  ifdef __clang__
 | |
| // Clang emulates GCC, so it has to appear early.
 | |
| #    if FMT_HAS_INCLUDE(<quadmath.h>)
 | |
| #      define FMT_USE_FLOAT128 1
 | |
| #    endif
 | |
| #  elif defined(__GNUC__)
 | |
| // GNU C++:
 | |
| #    if defined(_GLIBCXX_USE_FLOAT128) && !defined(__STRICT_ANSI__)
 | |
| #      define FMT_USE_FLOAT128 1
 | |
| #    endif
 | |
| #  endif
 | |
| #  ifndef FMT_USE_FLOAT128
 | |
| #    define FMT_USE_FLOAT128 0
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #if FMT_USE_FLOAT128
 | |
| using float128 = __float128;
 | |
| #else
 | |
| using float128 = void;
 | |
| #endif
 | |
| template <typename T> using is_float128 = std::is_same<T, float128>;
 | |
| 
 | |
| template <typename T>
 | |
| using is_floating_point =
 | |
|     bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>;
 | |
| 
 | |
| template <typename T, bool = std::is_floating_point<T>::value>
 | |
| struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
 | |
|                                      sizeof(T) <= sizeof(double)> {};
 | |
| template <typename T> struct is_fast_float<T, false> : std::false_type {};
 | |
| 
 | |
| template <typename T>
 | |
| using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>;
 | |
| 
 | |
| #ifndef FMT_USE_FULL_CACHE_DRAGONBOX
 | |
| #  define FMT_USE_FULL_CACHE_DRAGONBOX 0
 | |
| #endif
 | |
| 
 | |
| template <typename T>
 | |
| template <typename U>
 | |
| void buffer<T>::append(const U* begin, const U* end) {
 | |
|   while (begin != end) {
 | |
|     auto count = to_unsigned(end - begin);
 | |
|     try_reserve(size_ + count);
 | |
|     auto free_cap = capacity_ - size_;
 | |
|     if (free_cap < count) count = free_cap;
 | |
|     std::uninitialized_copy_n(begin, count, ptr_ + size_);
 | |
|     size_ += count;
 | |
|     begin += count;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T, typename Enable = void>
 | |
| struct is_locale : std::false_type {};
 | |
| template <typename T>
 | |
| struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
 | |
| }  // namespace detail
 | |
| 
 | |
| FMT_BEGIN_EXPORT
 | |
| 
 | |
| // The number of characters to store in the basic_memory_buffer object itself
 | |
| // to avoid dynamic memory allocation.
 | |
| enum { inline_buffer_size = 500 };
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   A dynamically growing memory buffer for trivially copyable/constructible types
 | |
|   with the first ``SIZE`` elements stored in the object itself.
 | |
| 
 | |
|   You can use the ``memory_buffer`` type alias for ``char`` instead.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|      auto out = fmt::memory_buffer();
 | |
|      fmt::format_to(std::back_inserter(out), "The answer is {}.", 42);
 | |
| 
 | |
|   This will append the following output to the ``out`` object:
 | |
| 
 | |
|   .. code-block:: none
 | |
| 
 | |
|      The answer is 42.
 | |
| 
 | |
|   The output can be converted to an ``std::string`` with ``to_string(out)``.
 | |
|   \endrst
 | |
|  */
 | |
| template <typename T, size_t SIZE = inline_buffer_size,
 | |
|           typename Allocator = std::allocator<T>>
 | |
| class basic_memory_buffer final : public detail::buffer<T> {
 | |
|  private:
 | |
|   T store_[SIZE];
 | |
| 
 | |
|   // Don't inherit from Allocator to avoid generating type_info for it.
 | |
|   FMT_NO_UNIQUE_ADDRESS Allocator alloc_;
 | |
| 
 | |
|   // Deallocate memory allocated by the buffer.
 | |
|   FMT_CONSTEXPR20 void deallocate() {
 | |
|     T* data = this->data();
 | |
|     if (data != store_) alloc_.deallocate(data, this->capacity());
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   FMT_CONSTEXPR20 void grow(size_t size) override {
 | |
|     detail::abort_fuzzing_if(size > 5000);
 | |
|     const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
 | |
|     size_t old_capacity = this->capacity();
 | |
|     size_t new_capacity = old_capacity + old_capacity / 2;
 | |
|     if (size > new_capacity)
 | |
|       new_capacity = size;
 | |
|     else if (new_capacity > max_size)
 | |
|       new_capacity = size > max_size ? size : max_size;
 | |
|     T* old_data = this->data();
 | |
|     T* new_data =
 | |
|         std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
 | |
|     // Suppress a bogus -Wstringop-overflow in gcc 13.1 (#3481).
 | |
|     detail::assume(this->size() <= new_capacity);
 | |
|     // The following code doesn't throw, so the raw pointer above doesn't leak.
 | |
|     std::uninitialized_copy_n(old_data, this->size(), new_data);
 | |
|     this->set(new_data, new_capacity);
 | |
|     // deallocate must not throw according to the standard, but even if it does,
 | |
|     // the buffer already uses the new storage and will deallocate it in
 | |
|     // destructor.
 | |
|     if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   using value_type = T;
 | |
|   using const_reference = const T&;
 | |
| 
 | |
|   FMT_CONSTEXPR20 explicit basic_memory_buffer(
 | |
|       const Allocator& alloc = Allocator())
 | |
|       : alloc_(alloc) {
 | |
|     this->set(store_, SIZE);
 | |
|     if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T());
 | |
|   }
 | |
|   FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }
 | |
| 
 | |
|  private:
 | |
|   // Move data from other to this buffer.
 | |
|   FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
 | |
|     alloc_ = std::move(other.alloc_);
 | |
|     T* data = other.data();
 | |
|     size_t size = other.size(), capacity = other.capacity();
 | |
|     if (data == other.store_) {
 | |
|       this->set(store_, capacity);
 | |
|       detail::copy_str<T>(other.store_, other.store_ + size, store_);
 | |
|     } else {
 | |
|       this->set(data, capacity);
 | |
|       // Set pointer to the inline array so that delete is not called
 | |
|       // when deallocating.
 | |
|       other.set(other.store_, 0);
 | |
|       other.clear();
 | |
|     }
 | |
|     this->resize(size);
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   /**
 | |
|     \rst
 | |
|     Constructs a :class:`fmt::basic_memory_buffer` object moving the content
 | |
|     of the other object to it.
 | |
|     \endrst
 | |
|    */
 | |
|   FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept {
 | |
|     move(other);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|     \rst
 | |
|     Moves the content of the other ``basic_memory_buffer`` object to this one.
 | |
|     \endrst
 | |
|    */
 | |
|   auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& {
 | |
|     FMT_ASSERT(this != &other, "");
 | |
|     deallocate();
 | |
|     move(other);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Returns a copy of the allocator associated with this buffer.
 | |
|   auto get_allocator() const -> Allocator { return alloc_; }
 | |
| 
 | |
|   /**
 | |
|     Resizes the buffer to contain *count* elements. If T is a POD type new
 | |
|     elements may not be initialized.
 | |
|    */
 | |
|   FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); }
 | |
| 
 | |
|   /** Increases the buffer capacity to *new_capacity*. */
 | |
|   void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
 | |
| 
 | |
|   using detail::buffer<T>::append;
 | |
|   template <typename ContiguousRange>
 | |
|   void append(const ContiguousRange& range) {
 | |
|     append(range.data(), range.data() + range.size());
 | |
|   }
 | |
| };
 | |
| 
 | |
| using memory_buffer = basic_memory_buffer<char>;
 | |
| 
 | |
| template <typename T, size_t SIZE, typename Allocator>
 | |
| struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
 | |
| };
 | |
| 
 | |
| FMT_END_EXPORT
 | |
| namespace detail {
 | |
| FMT_API auto write_console(int fd, string_view text) -> bool;
 | |
| FMT_API auto write_console(std::FILE* f, string_view text) -> bool;
 | |
| FMT_API void print(std::FILE*, string_view);
 | |
| }  // namespace detail
 | |
| 
 | |
| FMT_BEGIN_EXPORT
 | |
| 
 | |
| // Suppress a misleading warning in older versions of clang.
 | |
| #if FMT_CLANG_VERSION
 | |
| #  pragma clang diagnostic ignored "-Wweak-vtables"
 | |
| #endif
 | |
| 
 | |
| /** An error reported from a formatting function. */
 | |
| class FMT_SO_VISIBILITY("default") format_error : public std::runtime_error {
 | |
|  public:
 | |
|   using std::runtime_error::runtime_error;
 | |
| };
 | |
| 
 | |
| namespace detail_exported {
 | |
| #if FMT_USE_NONTYPE_TEMPLATE_ARGS
 | |
| template <typename Char, size_t N> struct fixed_string {
 | |
|   constexpr fixed_string(const Char (&str)[N]) {
 | |
|     detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
 | |
|                                                str + N, data);
 | |
|   }
 | |
|   Char data[N] = {};
 | |
| };
 | |
| #endif
 | |
| 
 | |
| // Converts a compile-time string to basic_string_view.
 | |
| template <typename Char, size_t N>
 | |
| constexpr auto compile_string_to_view(const Char (&s)[N])
 | |
|     -> basic_string_view<Char> {
 | |
|   // Remove trailing NUL character if needed. Won't be present if this is used
 | |
|   // with a raw character array (i.e. not defined as a string).
 | |
|   return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
 | |
| }
 | |
| template <typename Char>
 | |
| constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
 | |
|     -> basic_string_view<Char> {
 | |
|   return {s.data(), s.size()};
 | |
| }
 | |
| }  // namespace detail_exported
 | |
| 
 | |
| class loc_value {
 | |
|  private:
 | |
|   basic_format_arg<format_context> value_;
 | |
| 
 | |
|  public:
 | |
|   template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)>
 | |
|   loc_value(T value) : value_(detail::make_arg<format_context>(value)) {}
 | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)>
 | |
|   loc_value(T) {}
 | |
| 
 | |
|   template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) {
 | |
|     return visit_format_arg(vis, value_);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // A locale facet that formats values in UTF-8.
 | |
| // It is parameterized on the locale to avoid the heavy <locale> include.
 | |
| template <typename Locale> class format_facet : public Locale::facet {
 | |
|  private:
 | |
|   std::string separator_;
 | |
|   std::string grouping_;
 | |
|   std::string decimal_point_;
 | |
| 
 | |
|  protected:
 | |
|   virtual auto do_put(appender out, loc_value val,
 | |
|                       const format_specs<>& specs) const -> bool;
 | |
| 
 | |
|  public:
 | |
|   static FMT_API typename Locale::id id;
 | |
| 
 | |
|   explicit format_facet(Locale& loc);
 | |
|   explicit format_facet(string_view sep = "",
 | |
|                         std::initializer_list<unsigned char> g = {3},
 | |
|                         std::string decimal_point = ".")
 | |
|       : separator_(sep.data(), sep.size()),
 | |
|         grouping_(g.begin(), g.end()),
 | |
|         decimal_point_(decimal_point) {}
 | |
| 
 | |
|   auto put(appender out, loc_value val, const format_specs<>& specs) const
 | |
|       -> bool {
 | |
|     return do_put(out, val, specs);
 | |
|   }
 | |
| };
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| // Returns true if value is negative, false otherwise.
 | |
| // Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
 | |
| template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
 | |
| constexpr auto is_negative(T value) -> bool {
 | |
|   return value < 0;
 | |
| }
 | |
| template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
 | |
| constexpr auto is_negative(T) -> bool {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool {
 | |
|   if (std::is_same<T, float>()) return FMT_USE_FLOAT;
 | |
|   if (std::is_same<T, double>()) return FMT_USE_DOUBLE;
 | |
|   if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Smallest of uint32_t, uint64_t, uint128_t that is large enough to
 | |
| // represent all values of an integral type T.
 | |
| template <typename T>
 | |
| using uint32_or_64_or_128_t =
 | |
|     conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
 | |
|                   uint32_t,
 | |
|                   conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
 | |
| template <typename T>
 | |
| using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
 | |
| 
 | |
| #define FMT_POWERS_OF_10(factor)                                  \
 | |
|   factor * 10, (factor) * 100, (factor) * 1000, (factor) * 10000, \
 | |
|       (factor) * 100000, (factor) * 1000000, (factor) * 10000000, \
 | |
|       (factor) * 100000000, (factor) * 1000000000
 | |
| 
 | |
| // Converts value in the range [0, 100) to a string.
 | |
| constexpr auto digits2(size_t value) -> const char* {
 | |
|   // GCC generates slightly better code when value is pointer-size.
 | |
|   return &"0001020304050607080910111213141516171819"
 | |
|          "2021222324252627282930313233343536373839"
 | |
|          "4041424344454647484950515253545556575859"
 | |
|          "6061626364656667686970717273747576777879"
 | |
|          "8081828384858687888990919293949596979899"[value * 2];
 | |
| }
 | |
| 
 | |
| // Sign is a template parameter to workaround a bug in gcc 4.8.
 | |
| template <typename Char, typename Sign> constexpr auto sign(Sign s) -> Char {
 | |
| #if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
 | |
|   static_assert(std::is_same<Sign, sign_t>::value, "");
 | |
| #endif
 | |
|   return static_cast<Char>("\0-+ "[s]);
 | |
| }
 | |
| 
 | |
| template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
 | |
|   int count = 1;
 | |
|   for (;;) {
 | |
|     // Integer division is slow so do it for a group of four digits instead
 | |
|     // of for every digit. The idea comes from the talk by Alexandrescu
 | |
|     // "Three Optimization Tips for C++". See speed-test for a comparison.
 | |
|     if (n < 10) return count;
 | |
|     if (n < 100) return count + 1;
 | |
|     if (n < 1000) return count + 2;
 | |
|     if (n < 10000) return count + 3;
 | |
|     n /= 10000u;
 | |
|     count += 4;
 | |
|   }
 | |
| }
 | |
| #if FMT_USE_INT128
 | |
| FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int {
 | |
|   return count_digits_fallback(n);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef FMT_BUILTIN_CLZLL
 | |
| // It is a separate function rather than a part of count_digits to workaround
 | |
| // the lack of static constexpr in constexpr functions.
 | |
| inline auto do_count_digits(uint64_t n) -> int {
 | |
|   // This has comparable performance to the version by Kendall Willets
 | |
|   // (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
 | |
|   // but uses smaller tables.
 | |
|   // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
 | |
|   static constexpr uint8_t bsr2log10[] = {
 | |
|       1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,
 | |
|       6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10,
 | |
|       10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
 | |
|       15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
 | |
|   auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
 | |
|   static constexpr const uint64_t zero_or_powers_of_10[] = {
 | |
|       0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
 | |
|       10000000000000000000ULL};
 | |
|   return t - (n < zero_or_powers_of_10[t]);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Returns the number of decimal digits in n. Leading zeros are not counted
 | |
| // except for n == 0 in which case count_digits returns 1.
 | |
| FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
 | |
| #ifdef FMT_BUILTIN_CLZLL
 | |
|   if (!is_constant_evaluated()) {
 | |
|     return do_count_digits(n);
 | |
|   }
 | |
| #endif
 | |
|   return count_digits_fallback(n);
 | |
| }
 | |
| 
 | |
| // Counts the number of digits in n. BITS = log2(radix).
 | |
| template <int BITS, typename UInt>
 | |
| FMT_CONSTEXPR auto count_digits(UInt n) -> int {
 | |
| #ifdef FMT_BUILTIN_CLZ
 | |
|   if (!is_constant_evaluated() && num_bits<UInt>() == 32)
 | |
|     return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
 | |
| #endif
 | |
|   // Lambda avoids unreachable code warnings from NVHPC.
 | |
|   return [](UInt m) {
 | |
|     int num_digits = 0;
 | |
|     do {
 | |
|       ++num_digits;
 | |
|     } while ((m >>= BITS) != 0);
 | |
|     return num_digits;
 | |
|   }(n);
 | |
| }
 | |
| 
 | |
| #ifdef FMT_BUILTIN_CLZ
 | |
| // It is a separate function rather than a part of count_digits to workaround
 | |
| // the lack of static constexpr in constexpr functions.
 | |
| FMT_INLINE auto do_count_digits(uint32_t n) -> int {
 | |
| // An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
 | |
| // This increments the upper 32 bits (log10(T) - 1) when >= T is added.
 | |
| #  define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
 | |
|   static constexpr uint64_t table[] = {
 | |
|       FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8
 | |
|       FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64
 | |
|       FMT_INC(100),        FMT_INC(100),        FMT_INC(100),         // 512
 | |
|       FMT_INC(1000),       FMT_INC(1000),       FMT_INC(1000),        // 4096
 | |
|       FMT_INC(10000),      FMT_INC(10000),      FMT_INC(10000),       // 32k
 | |
|       FMT_INC(100000),     FMT_INC(100000),     FMT_INC(100000),      // 256k
 | |
|       FMT_INC(1000000),    FMT_INC(1000000),    FMT_INC(1000000),     // 2048k
 | |
|       FMT_INC(10000000),   FMT_INC(10000000),   FMT_INC(10000000),    // 16M
 | |
|       FMT_INC(100000000),  FMT_INC(100000000),  FMT_INC(100000000),   // 128M
 | |
|       FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000),  // 1024M
 | |
|       FMT_INC(1000000000), FMT_INC(1000000000)                        // 4B
 | |
|   };
 | |
|   auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
 | |
|   return static_cast<int>((n + inc) >> 32);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Optional version of count_digits for better performance on 32-bit platforms.
 | |
| FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
 | |
| #ifdef FMT_BUILTIN_CLZ
 | |
|   if (!is_constant_evaluated()) {
 | |
|     return do_count_digits(n);
 | |
|   }
 | |
| #endif
 | |
|   return count_digits_fallback(n);
 | |
| }
 | |
| 
 | |
| template <typename Int> constexpr auto digits10() noexcept -> int {
 | |
|   return std::numeric_limits<Int>::digits10;
 | |
| }
 | |
| template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; }
 | |
| template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; }
 | |
| 
 | |
| template <typename Char> struct thousands_sep_result {
 | |
|   std::string grouping;
 | |
|   Char thousands_sep;
 | |
| };
 | |
| 
 | |
| template <typename Char>
 | |
| FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
 | |
| template <typename Char>
 | |
| inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
 | |
|   auto result = thousands_sep_impl<char>(loc);
 | |
|   return {result.grouping, Char(result.thousands_sep)};
 | |
| }
 | |
| template <>
 | |
| inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
 | |
|   return thousands_sep_impl<wchar_t>(loc);
 | |
| }
 | |
| 
 | |
| template <typename Char>
 | |
| FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
 | |
| template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
 | |
|   return Char(decimal_point_impl<char>(loc));
 | |
| }
 | |
| template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
 | |
|   return decimal_point_impl<wchar_t>(loc);
 | |
| }
 | |
| 
 | |
| // Compares two characters for equality.
 | |
| template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
 | |
|   return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
 | |
| }
 | |
| inline auto equal2(const char* lhs, const char* rhs) -> bool {
 | |
|   return memcmp(lhs, rhs, 2) == 0;
 | |
| }
 | |
| 
 | |
| // Copies two characters from src to dst.
 | |
| template <typename Char>
 | |
| FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) {
 | |
|   if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) {
 | |
|     memcpy(dst, src, 2);
 | |
|     return;
 | |
|   }
 | |
|   *dst++ = static_cast<Char>(*src++);
 | |
|   *dst = static_cast<Char>(*src);
 | |
| }
 | |
| 
 | |
| template <typename Iterator> struct format_decimal_result {
 | |
|   Iterator begin;
 | |
|   Iterator end;
 | |
| };
 | |
| 
 | |
| // Formats a decimal unsigned integer value writing into out pointing to a
 | |
| // buffer of specified size. The caller must ensure that the buffer is large
 | |
| // enough.
 | |
| template <typename Char, typename UInt>
 | |
| FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
 | |
|     -> format_decimal_result<Char*> {
 | |
|   FMT_ASSERT(size >= count_digits(value), "invalid digit count");
 | |
|   out += size;
 | |
|   Char* end = out;
 | |
|   while (value >= 100) {
 | |
|     // Integer division is slow so do it for a group of two digits instead
 | |
|     // of for every digit. The idea comes from the talk by Alexandrescu
 | |
|     // "Three Optimization Tips for C++". See speed-test for a comparison.
 | |
|     out -= 2;
 | |
|     copy2(out, digits2(static_cast<size_t>(value % 100)));
 | |
|     value /= 100;
 | |
|   }
 | |
|   if (value < 10) {
 | |
|     *--out = static_cast<Char>('0' + value);
 | |
|     return {out, end};
 | |
|   }
 | |
|   out -= 2;
 | |
|   copy2(out, digits2(static_cast<size_t>(value)));
 | |
|   return {out, end};
 | |
| }
 | |
| 
 | |
| template <typename Char, typename UInt, typename Iterator,
 | |
|           FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
 | |
| FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size)
 | |
|     -> format_decimal_result<Iterator> {
 | |
|   // Buffer is large enough to hold all digits (digits10 + 1).
 | |
|   Char buffer[digits10<UInt>() + 1] = {};
 | |
|   auto end = format_decimal(buffer, value, size).end;
 | |
|   return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
 | |
| }
 | |
| 
 | |
| template <unsigned BASE_BITS, typename Char, typename UInt>
 | |
| FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
 | |
|                                bool upper = false) -> Char* {
 | |
|   buffer += num_digits;
 | |
|   Char* end = buffer;
 | |
|   do {
 | |
|     const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
 | |
|     unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1));
 | |
|     *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
 | |
|                                                 : digits[digit]);
 | |
|   } while ((value >>= BASE_BITS) != 0);
 | |
|   return end;
 | |
| }
 | |
| 
 | |
| template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
 | |
| FMT_CONSTEXPR inline auto format_uint(It out, UInt value, int num_digits,
 | |
|                                       bool upper = false) -> It {
 | |
|   if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
 | |
|     format_uint<BASE_BITS>(ptr, value, num_digits, upper);
 | |
|     return out;
 | |
|   }
 | |
|   // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
 | |
|   char buffer[num_bits<UInt>() / BASE_BITS + 1] = {};
 | |
|   format_uint<BASE_BITS>(buffer, value, num_digits, upper);
 | |
|   return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
 | |
| }
 | |
| 
 | |
| // A converter from UTF-8 to UTF-16.
 | |
| class utf8_to_utf16 {
 | |
|  private:
 | |
|   basic_memory_buffer<wchar_t> buffer_;
 | |
| 
 | |
|  public:
 | |
|   FMT_API explicit utf8_to_utf16(string_view s);
 | |
|   operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
 | |
|   auto size() const -> size_t { return buffer_.size() - 1; }
 | |
|   auto c_str() const -> const wchar_t* { return &buffer_[0]; }
 | |
|   auto str() const -> std::wstring { return {&buffer_[0], size()}; }
 | |
| };
 | |
| 
 | |
| enum class to_utf8_error_policy { abort, replace };
 | |
| 
 | |
| // A converter from UTF-16/UTF-32 (host endian) to UTF-8.
 | |
| template <typename WChar, typename Buffer = memory_buffer> class to_utf8 {
 | |
|  private:
 | |
|   Buffer buffer_;
 | |
| 
 | |
|  public:
 | |
|   to_utf8() {}
 | |
|   explicit to_utf8(basic_string_view<WChar> s,
 | |
|                    to_utf8_error_policy policy = to_utf8_error_policy::abort) {
 | |
|     static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
 | |
|                   "Expect utf16 or utf32");
 | |
|     if (!convert(s, policy))
 | |
|       FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
 | |
|                                                       : "invalid utf32"));
 | |
|   }
 | |
|   operator string_view() const { return string_view(&buffer_[0], size()); }
 | |
|   auto size() const -> size_t { return buffer_.size() - 1; }
 | |
|   auto c_str() const -> const char* { return &buffer_[0]; }
 | |
|   auto str() const -> std::string { return std::string(&buffer_[0], size()); }
 | |
| 
 | |
|   // Performs conversion returning a bool instead of throwing exception on
 | |
|   // conversion error. This method may still throw in case of memory allocation
 | |
|   // error.
 | |
|   auto convert(basic_string_view<WChar> s,
 | |
|                to_utf8_error_policy policy = to_utf8_error_policy::abort)
 | |
|       -> bool {
 | |
|     if (!convert(buffer_, s, policy)) return false;
 | |
|     buffer_.push_back(0);
 | |
|     return true;
 | |
|   }
 | |
|   static auto convert(Buffer& buf, basic_string_view<WChar> s,
 | |
|                       to_utf8_error_policy policy = to_utf8_error_policy::abort)
 | |
|       -> bool {
 | |
|     for (auto p = s.begin(); p != s.end(); ++p) {
 | |
|       uint32_t c = static_cast<uint32_t>(*p);
 | |
|       if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
 | |
|         // Handle a surrogate pair.
 | |
|         ++p;
 | |
|         if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
 | |
|           if (policy == to_utf8_error_policy::abort) return false;
 | |
|           buf.append(string_view("\xEF\xBF\xBD"));
 | |
|           --p;
 | |
|         } else {
 | |
|           c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
 | |
|         }
 | |
|       } else if (c < 0x80) {
 | |
|         buf.push_back(static_cast<char>(c));
 | |
|       } else if (c < 0x800) {
 | |
|         buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
 | |
|         buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
 | |
|       } else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) {
 | |
|         buf.push_back(static_cast<char>(0xe0 | (c >> 12)));
 | |
|         buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
 | |
|         buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
 | |
|       } else if (c >= 0x10000 && c <= 0x10ffff) {
 | |
|         buf.push_back(static_cast<char>(0xf0 | (c >> 18)));
 | |
|         buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12)));
 | |
|         buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
 | |
|         buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
 | |
|       } else {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Computes 128-bit result of multiplication of two 64-bit unsigned integers.
 | |
| inline auto umul128(uint64_t x, uint64_t y) noexcept -> uint128_fallback {
 | |
| #if FMT_USE_INT128
 | |
|   auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
 | |
|   return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
 | |
| #elif defined(_MSC_VER) && defined(_M_X64)
 | |
|   auto hi = uint64_t();
 | |
|   auto lo = _umul128(x, y, &hi);
 | |
|   return {hi, lo};
 | |
| #else
 | |
|   const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
 | |
| 
 | |
|   uint64_t a = x >> 32;
 | |
|   uint64_t b = x & mask;
 | |
|   uint64_t c = y >> 32;
 | |
|   uint64_t d = y & mask;
 | |
| 
 | |
|   uint64_t ac = a * c;
 | |
|   uint64_t bc = b * c;
 | |
|   uint64_t ad = a * d;
 | |
|   uint64_t bd = b * d;
 | |
| 
 | |
|   uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
 | |
| 
 | |
|   return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
 | |
|           (intermediate << 32) + (bd & mask)};
 | |
| #endif
 | |
| }
 | |
| 
 | |
| namespace dragonbox {
 | |
| // Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
 | |
| // https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
 | |
| inline auto floor_log10_pow2(int e) noexcept -> int {
 | |
|   FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
 | |
|   static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
 | |
|   return (e * 315653) >> 20;
 | |
| }
 | |
| 
 | |
| inline auto floor_log2_pow10(int e) noexcept -> int {
 | |
|   FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
 | |
|   return (e * 1741647) >> 19;
 | |
| }
 | |
| 
 | |
| // Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
 | |
| inline auto umul128_upper64(uint64_t x, uint64_t y) noexcept -> uint64_t {
 | |
| #if FMT_USE_INT128
 | |
|   auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
 | |
|   return static_cast<uint64_t>(p >> 64);
 | |
| #elif defined(_MSC_VER) && defined(_M_X64)
 | |
|   return __umulh(x, y);
 | |
| #else
 | |
|   return umul128(x, y).high();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
 | |
| // 128-bit unsigned integer.
 | |
| inline auto umul192_upper128(uint64_t x, uint128_fallback y) noexcept
 | |
|     -> uint128_fallback {
 | |
|   uint128_fallback r = umul128(x, y.high());
 | |
|   r += umul128_upper64(x, y.low());
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| FMT_API auto get_cached_power(int k) noexcept -> uint128_fallback;
 | |
| 
 | |
| // Type-specific information that Dragonbox uses.
 | |
| template <typename T, typename Enable = void> struct float_info;
 | |
| 
 | |
| template <> struct float_info<float> {
 | |
|   using carrier_uint = uint32_t;
 | |
|   static const int exponent_bits = 8;
 | |
|   static const int kappa = 1;
 | |
|   static const int big_divisor = 100;
 | |
|   static const int small_divisor = 10;
 | |
|   static const int min_k = -31;
 | |
|   static const int max_k = 46;
 | |
|   static const int shorter_interval_tie_lower_threshold = -35;
 | |
|   static const int shorter_interval_tie_upper_threshold = -35;
 | |
| };
 | |
| 
 | |
| template <> struct float_info<double> {
 | |
|   using carrier_uint = uint64_t;
 | |
|   static const int exponent_bits = 11;
 | |
|   static const int kappa = 2;
 | |
|   static const int big_divisor = 1000;
 | |
|   static const int small_divisor = 100;
 | |
|   static const int min_k = -292;
 | |
|   static const int max_k = 341;
 | |
|   static const int shorter_interval_tie_lower_threshold = -77;
 | |
|   static const int shorter_interval_tie_upper_threshold = -77;
 | |
| };
 | |
| 
 | |
| // An 80- or 128-bit floating point number.
 | |
| template <typename T>
 | |
| struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 ||
 | |
|                                  std::numeric_limits<T>::digits == 113 ||
 | |
|                                  is_float128<T>::value>> {
 | |
|   using carrier_uint = detail::uint128_t;
 | |
|   static const int exponent_bits = 15;
 | |
| };
 | |
| 
 | |
| // A double-double floating point number.
 | |
| template <typename T>
 | |
| struct float_info<T, enable_if_t<is_double_double<T>::value>> {
 | |
|   using carrier_uint = detail::uint128_t;
 | |
| };
 | |
| 
 | |
| template <typename T> struct decimal_fp {
 | |
|   using significand_type = typename float_info<T>::carrier_uint;
 | |
|   significand_type significand;
 | |
|   int exponent;
 | |
| };
 | |
| 
 | |
| template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>;
 | |
| }  // namespace dragonbox
 | |
| 
 | |
| // Returns true iff Float has the implicit bit which is not stored.
 | |
| template <typename Float> constexpr auto has_implicit_bit() -> bool {
 | |
|   // An 80-bit FP number has a 64-bit significand an no implicit bit.
 | |
|   return std::numeric_limits<Float>::digits != 64;
 | |
| }
 | |
| 
 | |
| // Returns the number of significand bits stored in Float. The implicit bit is
 | |
| // not counted since it is not stored.
 | |
| template <typename Float> constexpr auto num_significand_bits() -> int {
 | |
|   // std::numeric_limits may not support __float128.
 | |
|   return is_float128<Float>() ? 112
 | |
|                               : (std::numeric_limits<Float>::digits -
 | |
|                                  (has_implicit_bit<Float>() ? 1 : 0));
 | |
| }
 | |
| 
 | |
| template <typename Float>
 | |
| constexpr auto exponent_mask() ->
 | |
|     typename dragonbox::float_info<Float>::carrier_uint {
 | |
|   using float_uint = typename dragonbox::float_info<Float>::carrier_uint;
 | |
|   return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1)
 | |
|          << num_significand_bits<Float>();
 | |
| }
 | |
| template <typename Float> constexpr auto exponent_bias() -> int {
 | |
|   // std::numeric_limits may not support __float128.
 | |
|   return is_float128<Float>() ? 16383
 | |
|                               : std::numeric_limits<Float>::max_exponent - 1;
 | |
| }
 | |
| 
 | |
| // Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
 | |
| template <typename Char, typename It>
 | |
| FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It {
 | |
|   FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
 | |
|   if (exp < 0) {
 | |
|     *it++ = static_cast<Char>('-');
 | |
|     exp = -exp;
 | |
|   } else {
 | |
|     *it++ = static_cast<Char>('+');
 | |
|   }
 | |
|   if (exp >= 100) {
 | |
|     const char* top = digits2(to_unsigned(exp / 100));
 | |
|     if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
 | |
|     *it++ = static_cast<Char>(top[1]);
 | |
|     exp %= 100;
 | |
|   }
 | |
|   const char* d = digits2(to_unsigned(exp));
 | |
|   *it++ = static_cast<Char>(d[0]);
 | |
|   *it++ = static_cast<Char>(d[1]);
 | |
|   return it;
 | |
| }
 | |
| 
 | |
| // A floating-point number f * pow(2, e) where F is an unsigned type.
 | |
| template <typename F> struct basic_fp {
 | |
|   F f;
 | |
|   int e;
 | |
| 
 | |
|   static constexpr const int num_significand_bits =
 | |
|       static_cast<int>(sizeof(F) * num_bits<unsigned char>());
 | |
| 
 | |
|   constexpr basic_fp() : f(0), e(0) {}
 | |
|   constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
 | |
| 
 | |
|   // Constructs fp from an IEEE754 floating-point number.
 | |
|   template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
 | |
| 
 | |
|   // Assigns n to this and return true iff predecessor is closer than successor.
 | |
|   template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
 | |
|   FMT_CONSTEXPR auto assign(Float n) -> bool {
 | |
|     static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP");
 | |
|     // Assume Float is in the format [sign][exponent][significand].
 | |
|     using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
 | |
|     const auto num_float_significand_bits =
 | |
|         detail::num_significand_bits<Float>();
 | |
|     const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
 | |
|     const auto significand_mask = implicit_bit - 1;
 | |
|     auto u = bit_cast<carrier_uint>(n);
 | |
|     f = static_cast<F>(u & significand_mask);
 | |
|     auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
 | |
|                                      num_float_significand_bits);
 | |
|     // The predecessor is closer if n is a normalized power of 2 (f == 0)
 | |
|     // other than the smallest normalized number (biased_e > 1).
 | |
|     auto is_predecessor_closer = f == 0 && biased_e > 1;
 | |
|     if (biased_e == 0)
 | |
|       biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
 | |
|     else if (has_implicit_bit<Float>())
 | |
|       f += static_cast<F>(implicit_bit);
 | |
|     e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
 | |
|     if (!has_implicit_bit<Float>()) ++e;
 | |
|     return is_predecessor_closer;
 | |
|   }
 | |
| 
 | |
|   template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
 | |
|   FMT_CONSTEXPR auto assign(Float n) -> bool {
 | |
|     static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP");
 | |
|     return assign(static_cast<double>(n));
 | |
|   }
 | |
| };
 | |
| 
 | |
| using fp = basic_fp<unsigned long long>;
 | |
| 
 | |
| // Normalizes the value converted from double and multiplied by (1 << SHIFT).
 | |
| template <int SHIFT = 0, typename F>
 | |
| FMT_CONSTEXPR auto normalize(basic_fp<F> value) -> basic_fp<F> {
 | |
|   // Handle subnormals.
 | |
|   const auto implicit_bit = F(1) << num_significand_bits<double>();
 | |
|   const auto shifted_implicit_bit = implicit_bit << SHIFT;
 | |
|   while ((value.f & shifted_implicit_bit) == 0) {
 | |
|     value.f <<= 1;
 | |
|     --value.e;
 | |
|   }
 | |
|   // Subtract 1 to account for hidden bit.
 | |
|   const auto offset = basic_fp<F>::num_significand_bits -
 | |
|                       num_significand_bits<double>() - SHIFT - 1;
 | |
|   value.f <<= offset;
 | |
|   value.e -= offset;
 | |
|   return value;
 | |
| }
 | |
| 
 | |
| // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
 | |
| FMT_CONSTEXPR inline auto multiply(uint64_t lhs, uint64_t rhs) -> uint64_t {
 | |
| #if FMT_USE_INT128
 | |
|   auto product = static_cast<__uint128_t>(lhs) * rhs;
 | |
|   auto f = static_cast<uint64_t>(product >> 64);
 | |
|   return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
 | |
| #else
 | |
|   // Multiply 32-bit parts of significands.
 | |
|   uint64_t mask = (1ULL << 32) - 1;
 | |
|   uint64_t a = lhs >> 32, b = lhs & mask;
 | |
|   uint64_t c = rhs >> 32, d = rhs & mask;
 | |
|   uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
 | |
|   // Compute mid 64-bit of result and round.
 | |
|   uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
 | |
|   return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| FMT_CONSTEXPR inline auto operator*(fp x, fp y) -> fp {
 | |
|   return {multiply(x.f, y.f), x.e + y.e + 64};
 | |
| }
 | |
| 
 | |
| template <typename T, bool doublish = num_bits<T>() == num_bits<double>()>
 | |
| using convert_float_result =
 | |
|     conditional_t<std::is_same<T, float>::value || doublish, double, T>;
 | |
| 
 | |
| template <typename T>
 | |
| constexpr auto convert_float(T value) -> convert_float_result<T> {
 | |
|   return static_cast<convert_float_result<T>>(value);
 | |
| }
 | |
| 
 | |
| template <typename OutputIt, typename Char>
 | |
| FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
 | |
|                                      const fill_t<Char>& fill) -> OutputIt {
 | |
|   auto fill_size = fill.size();
 | |
|   if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
 | |
|   auto data = fill.data();
 | |
|   for (size_t i = 0; i < n; ++i)
 | |
|     it = copy_str<Char>(data, data + fill_size, it);
 | |
|   return it;
 | |
| }
 | |
| 
 | |
| // Writes the output of f, padded according to format specifications in specs.
 | |
| // size: output size in code units.
 | |
| // width: output display width in (terminal) column positions.
 | |
| template <align::type align = align::left, typename OutputIt, typename Char,
 | |
|           typename F>
 | |
| FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs<Char>& specs,
 | |
|                                 size_t size, size_t width, F&& f) -> OutputIt {
 | |
|   static_assert(align == align::left || align == align::right, "");
 | |
|   unsigned spec_width = to_unsigned(specs.width);
 | |
|   size_t padding = spec_width > width ? spec_width - width : 0;
 | |
|   // Shifts are encoded as string literals because static constexpr is not
 | |
|   // supported in constexpr functions.
 | |
|   auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
 | |
|   size_t left_padding = padding >> shifts[specs.align];
 | |
|   size_t right_padding = padding - left_padding;
 | |
|   auto it = reserve(out, size + padding * specs.fill.size());
 | |
|   if (left_padding != 0) it = fill(it, left_padding, specs.fill);
 | |
|   it = f(it);
 | |
|   if (right_padding != 0) it = fill(it, right_padding, specs.fill);
 | |
|   return base_iterator(out, it);
 | |
| }
 | |
| 
 | |
| template <align::type align = align::left, typename OutputIt, typename Char,
 | |
|           typename F>
 | |
| constexpr auto write_padded(OutputIt out, const format_specs<Char>& specs,
 | |
|                             size_t size, F&& f) -> OutputIt {
 | |
|   return write_padded<align>(out, specs, size, size, f);
 | |
| }
 | |
| 
 | |
| template <align::type align = align::left, typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
 | |
|                                const format_specs<Char>& specs) -> OutputIt {
 | |
|   return write_padded<align>(
 | |
|       out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
 | |
|         const char* data = bytes.data();
 | |
|         return copy_str<Char>(data, data + bytes.size(), it);
 | |
|       });
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename UIntPtr>
 | |
| auto write_ptr(OutputIt out, UIntPtr value, const format_specs<Char>* specs)
 | |
|     -> OutputIt {
 | |
|   int num_digits = count_digits<4>(value);
 | |
|   auto size = to_unsigned(num_digits) + size_t(2);
 | |
|   auto write = [=](reserve_iterator<OutputIt> it) {
 | |
|     *it++ = static_cast<Char>('0');
 | |
|     *it++ = static_cast<Char>('x');
 | |
|     return format_uint<4, Char>(it, value, num_digits);
 | |
|   };
 | |
|   return specs ? write_padded<align::right>(out, *specs, size, write)
 | |
|                : base_iterator(out, write(reserve(out, size)));
 | |
| }
 | |
| 
 | |
| // Returns true iff the code point cp is printable.
 | |
| FMT_API auto is_printable(uint32_t cp) -> bool;
 | |
| 
 | |
| inline auto needs_escape(uint32_t cp) -> bool {
 | |
|   return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' ||
 | |
|          !is_printable(cp);
 | |
| }
 | |
| 
 | |
| template <typename Char> struct find_escape_result {
 | |
|   const Char* begin;
 | |
|   const Char* end;
 | |
|   uint32_t cp;
 | |
| };
 | |
| 
 | |
| template <typename Char>
 | |
| using make_unsigned_char =
 | |
|     typename conditional_t<std::is_integral<Char>::value,
 | |
|                            std::make_unsigned<Char>,
 | |
|                            type_identity<uint32_t>>::type;
 | |
| 
 | |
| template <typename Char>
 | |
| auto find_escape(const Char* begin, const Char* end)
 | |
|     -> find_escape_result<Char> {
 | |
|   for (; begin != end; ++begin) {
 | |
|     uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin);
 | |
|     if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue;
 | |
|     if (needs_escape(cp)) return {begin, begin + 1, cp};
 | |
|   }
 | |
|   return {begin, nullptr, 0};
 | |
| }
 | |
| 
 | |
| inline auto find_escape(const char* begin, const char* end)
 | |
|     -> find_escape_result<char> {
 | |
|   if (!is_utf8()) return find_escape<char>(begin, end);
 | |
|   auto result = find_escape_result<char>{end, nullptr, 0};
 | |
|   for_each_codepoint(string_view(begin, to_unsigned(end - begin)),
 | |
|                      [&](uint32_t cp, string_view sv) {
 | |
|                        if (needs_escape(cp)) {
 | |
|                          result = {sv.begin(), sv.end(), cp};
 | |
|                          return false;
 | |
|                        }
 | |
|                        return true;
 | |
|                      });
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| #define FMT_STRING_IMPL(s, base, explicit)                                    \
 | |
|   [] {                                                                        \
 | |
|     /* Use the hidden visibility as a workaround for a GCC bug (#1973). */    \
 | |
|     /* Use a macro-like name to avoid shadowing warnings. */                  \
 | |
|     struct FMT_VISIBILITY("hidden") FMT_COMPILE_STRING : base {               \
 | |
|       using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \
 | |
|       FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                                 \
 | |
|       operator fmt::basic_string_view<char_type>() const {                    \
 | |
|         return fmt::detail_exported::compile_string_to_view<char_type>(s);    \
 | |
|       }                                                                       \
 | |
|     };                                                                        \
 | |
|     return FMT_COMPILE_STRING();                                              \
 | |
|   }()
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   Constructs a compile-time format string from a string literal *s*.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|     // A compile-time error because 'd' is an invalid specifier for strings.
 | |
|     std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
 | |
|   \endrst
 | |
|  */
 | |
| #define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, )
 | |
| 
 | |
| template <size_t width, typename Char, typename OutputIt>
 | |
| auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt {
 | |
|   *out++ = static_cast<Char>('\\');
 | |
|   *out++ = static_cast<Char>(prefix);
 | |
|   Char buf[width];
 | |
|   fill_n(buf, width, static_cast<Char>('0'));
 | |
|   format_uint<4>(buf, cp, width);
 | |
|   return copy_str<Char>(buf, buf + width, out);
 | |
| }
 | |
| 
 | |
| template <typename OutputIt, typename Char>
 | |
| auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape)
 | |
|     -> OutputIt {
 | |
|   auto c = static_cast<Char>(escape.cp);
 | |
|   switch (escape.cp) {
 | |
|   case '\n':
 | |
|     *out++ = static_cast<Char>('\\');
 | |
|     c = static_cast<Char>('n');
 | |
|     break;
 | |
|   case '\r':
 | |
|     *out++ = static_cast<Char>('\\');
 | |
|     c = static_cast<Char>('r');
 | |
|     break;
 | |
|   case '\t':
 | |
|     *out++ = static_cast<Char>('\\');
 | |
|     c = static_cast<Char>('t');
 | |
|     break;
 | |
|   case '"':
 | |
|     FMT_FALLTHROUGH;
 | |
|   case '\'':
 | |
|     FMT_FALLTHROUGH;
 | |
|   case '\\':
 | |
|     *out++ = static_cast<Char>('\\');
 | |
|     break;
 | |
|   default:
 | |
|     if (escape.cp < 0x100) {
 | |
|       return write_codepoint<2, Char>(out, 'x', escape.cp);
 | |
|     }
 | |
|     if (escape.cp < 0x10000) {
 | |
|       return write_codepoint<4, Char>(out, 'u', escape.cp);
 | |
|     }
 | |
|     if (escape.cp < 0x110000) {
 | |
|       return write_codepoint<8, Char>(out, 'U', escape.cp);
 | |
|     }
 | |
|     for (Char escape_char : basic_string_view<Char>(
 | |
|              escape.begin, to_unsigned(escape.end - escape.begin))) {
 | |
|       out = write_codepoint<2, Char>(out, 'x',
 | |
|                                      static_cast<uint32_t>(escape_char) & 0xFF);
 | |
|     }
 | |
|     return out;
 | |
|   }
 | |
|   *out++ = c;
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| auto write_escaped_string(OutputIt out, basic_string_view<Char> str)
 | |
|     -> OutputIt {
 | |
|   *out++ = static_cast<Char>('"');
 | |
|   auto begin = str.begin(), end = str.end();
 | |
|   do {
 | |
|     auto escape = find_escape(begin, end);
 | |
|     out = copy_str<Char>(begin, escape.begin, out);
 | |
|     begin = escape.end;
 | |
|     if (!begin) break;
 | |
|     out = write_escaped_cp<OutputIt, Char>(out, escape);
 | |
|   } while (begin != end);
 | |
|   *out++ = static_cast<Char>('"');
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
 | |
|   Char v_array[1] = {v};
 | |
|   *out++ = static_cast<Char>('\'');
 | |
|   if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
 | |
|       v == static_cast<Char>('\'')) {
 | |
|     out = write_escaped_cp(out,
 | |
|                            find_escape_result<Char>{v_array, v_array + 1,
 | |
|                                                     static_cast<uint32_t>(v)});
 | |
|   } else {
 | |
|     *out++ = v;
 | |
|   }
 | |
|   *out++ = static_cast<Char>('\'');
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
 | |
|                               const format_specs<Char>& specs) -> OutputIt {
 | |
|   bool is_debug = specs.type == presentation_type::debug;
 | |
|   return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
 | |
|     if (is_debug) return write_escaped_char(it, value);
 | |
|     *it++ = value;
 | |
|     return it;
 | |
|   });
 | |
| }
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, Char value,
 | |
|                          const format_specs<Char>& specs, locale_ref loc = {})
 | |
|     -> OutputIt {
 | |
|   // char is formatted as unsigned char for consistency across platforms.
 | |
|   using unsigned_type =
 | |
|       conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>;
 | |
|   return check_char_specs(specs)
 | |
|              ? write_char(out, value, specs)
 | |
|              : write(out, static_cast<unsigned_type>(value), specs, loc);
 | |
| }
 | |
| 
 | |
| // Data for write_int that doesn't depend on output iterator type. It is used to
 | |
| // avoid template code bloat.
 | |
| template <typename Char> struct write_int_data {
 | |
|   size_t size;
 | |
|   size_t padding;
 | |
| 
 | |
|   FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
 | |
|                                const format_specs<Char>& specs)
 | |
|       : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
 | |
|     if (specs.align == align::numeric) {
 | |
|       auto width = to_unsigned(specs.width);
 | |
|       if (width > size) {
 | |
|         padding = width - size;
 | |
|         size = width;
 | |
|       }
 | |
|     } else if (specs.precision > num_digits) {
 | |
|       size = (prefix >> 24) + to_unsigned(specs.precision);
 | |
|       padding = to_unsigned(specs.precision - num_digits);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Writes an integer in the format
 | |
| //   <left-padding><prefix><numeric-padding><digits><right-padding>
 | |
| // where <digits> are written by write_digits(it).
 | |
| // prefix contains chars in three lower bytes and the size in the fourth byte.
 | |
| template <typename OutputIt, typename Char, typename W>
 | |
| FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
 | |
|                                         unsigned prefix,
 | |
|                                         const format_specs<Char>& specs,
 | |
|                                         W write_digits) -> OutputIt {
 | |
|   // Slightly faster check for specs.width == 0 && specs.precision == -1.
 | |
|   if ((specs.width | (specs.precision + 1)) == 0) {
 | |
|     auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
 | |
|     if (prefix != 0) {
 | |
|       for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
 | |
|         *it++ = static_cast<Char>(p & 0xff);
 | |
|     }
 | |
|     return base_iterator(out, write_digits(it));
 | |
|   }
 | |
|   auto data = write_int_data<Char>(num_digits, prefix, specs);
 | |
|   return write_padded<align::right>(
 | |
|       out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
 | |
|         for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
 | |
|           *it++ = static_cast<Char>(p & 0xff);
 | |
|         it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
 | |
|         return write_digits(it);
 | |
|       });
 | |
| }
 | |
| 
 | |
| template <typename Char> class digit_grouping {
 | |
|  private:
 | |
|   std::string grouping_;
 | |
|   std::basic_string<Char> thousands_sep_;
 | |
| 
 | |
|   struct next_state {
 | |
|     std::string::const_iterator group;
 | |
|     int pos;
 | |
|   };
 | |
|   auto initial_state() const -> next_state { return {grouping_.begin(), 0}; }
 | |
| 
 | |
|   // Returns the next digit group separator position.
 | |
|   auto next(next_state& state) const -> int {
 | |
|     if (thousands_sep_.empty()) return max_value<int>();
 | |
|     if (state.group == grouping_.end()) return state.pos += grouping_.back();
 | |
|     if (*state.group <= 0 || *state.group == max_value<char>())
 | |
|       return max_value<int>();
 | |
|     state.pos += *state.group++;
 | |
|     return state.pos;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   explicit digit_grouping(locale_ref loc, bool localized = true) {
 | |
|     if (!localized) return;
 | |
|     auto sep = thousands_sep<Char>(loc);
 | |
|     grouping_ = sep.grouping;
 | |
|     if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep);
 | |
|   }
 | |
|   digit_grouping(std::string grouping, std::basic_string<Char> sep)
 | |
|       : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {}
 | |
| 
 | |
|   auto has_separator() const -> bool { return !thousands_sep_.empty(); }
 | |
| 
 | |
|   auto count_separators(int num_digits) const -> int {
 | |
|     int count = 0;
 | |
|     auto state = initial_state();
 | |
|     while (num_digits > next(state)) ++count;
 | |
|     return count;
 | |
|   }
 | |
| 
 | |
|   // Applies grouping to digits and write the output to out.
 | |
|   template <typename Out, typename C>
 | |
|   auto apply(Out out, basic_string_view<C> digits) const -> Out {
 | |
|     auto num_digits = static_cast<int>(digits.size());
 | |
|     auto separators = basic_memory_buffer<int>();
 | |
|     separators.push_back(0);
 | |
|     auto state = initial_state();
 | |
|     while (int i = next(state)) {
 | |
|       if (i >= num_digits) break;
 | |
|       separators.push_back(i);
 | |
|     }
 | |
|     for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
 | |
|          i < num_digits; ++i) {
 | |
|       if (num_digits - i == separators[sep_index]) {
 | |
|         out =
 | |
|             copy_str<Char>(thousands_sep_.data(),
 | |
|                            thousands_sep_.data() + thousands_sep_.size(), out);
 | |
|         --sep_index;
 | |
|       }
 | |
|       *out++ = static_cast<Char>(digits[to_unsigned(i)]);
 | |
|     }
 | |
|     return out;
 | |
|   }
 | |
| };
 | |
| 
 | |
| FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
 | |
|   prefix |= prefix != 0 ? value << 8 : value;
 | |
|   prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
 | |
| }
 | |
| 
 | |
| // Writes a decimal integer with digit grouping.
 | |
| template <typename OutputIt, typename UInt, typename Char>
 | |
| auto write_int(OutputIt out, UInt value, unsigned prefix,
 | |
|                const format_specs<Char>& specs,
 | |
|                const digit_grouping<Char>& grouping) -> OutputIt {
 | |
|   static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
 | |
|   int num_digits = 0;
 | |
|   auto buffer = memory_buffer();
 | |
|   switch (specs.type) {
 | |
|   case presentation_type::none:
 | |
|   case presentation_type::dec: {
 | |
|     num_digits = count_digits(value);
 | |
|     format_decimal<char>(appender(buffer), value, num_digits);
 | |
|     break;
 | |
|   }
 | |
|   case presentation_type::hex_lower:
 | |
|   case presentation_type::hex_upper: {
 | |
|     bool upper = specs.type == presentation_type::hex_upper;
 | |
|     if (specs.alt)
 | |
|       prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
 | |
|     num_digits = count_digits<4>(value);
 | |
|     format_uint<4, char>(appender(buffer), value, num_digits, upper);
 | |
|     break;
 | |
|   }
 | |
|   case presentation_type::bin_lower:
 | |
|   case presentation_type::bin_upper: {
 | |
|     bool upper = specs.type == presentation_type::bin_upper;
 | |
|     if (specs.alt)
 | |
|       prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
 | |
|     num_digits = count_digits<1>(value);
 | |
|     format_uint<1, char>(appender(buffer), value, num_digits);
 | |
|     break;
 | |
|   }
 | |
|   case presentation_type::oct: {
 | |
|     num_digits = count_digits<3>(value);
 | |
|     // Octal prefix '0' is counted as a digit, so only add it if precision
 | |
|     // is not greater than the number of digits.
 | |
|     if (specs.alt && specs.precision <= num_digits && value != 0)
 | |
|       prefix_append(prefix, '0');
 | |
|     format_uint<3, char>(appender(buffer), value, num_digits);
 | |
|     break;
 | |
|   }
 | |
|   case presentation_type::chr:
 | |
|     return write_char(out, static_cast<Char>(value), specs);
 | |
|   default:
 | |
|     throw_format_error("invalid format specifier");
 | |
|   }
 | |
| 
 | |
|   unsigned size = (prefix != 0 ? prefix >> 24 : 0) + to_unsigned(num_digits) +
 | |
|                   to_unsigned(grouping.count_separators(num_digits));
 | |
|   return write_padded<align::right>(
 | |
|       out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
 | |
|         for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
 | |
|           *it++ = static_cast<Char>(p & 0xff);
 | |
|         return grouping.apply(it, string_view(buffer.data(), buffer.size()));
 | |
|       });
 | |
| }
 | |
| 
 | |
| // Writes a localized value.
 | |
| FMT_API auto write_loc(appender out, loc_value value,
 | |
|                        const format_specs<>& specs, locale_ref loc) -> bool;
 | |
| template <typename OutputIt, typename Char>
 | |
| inline auto write_loc(OutputIt, loc_value, const format_specs<Char>&,
 | |
|                       locale_ref) -> bool {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <typename UInt> struct write_int_arg {
 | |
|   UInt abs_value;
 | |
|   unsigned prefix;
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
 | |
|     -> write_int_arg<uint32_or_64_or_128_t<T>> {
 | |
|   auto prefix = 0u;
 | |
|   auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
 | |
|   if (is_negative(value)) {
 | |
|     prefix = 0x01000000 | '-';
 | |
|     abs_value = 0 - abs_value;
 | |
|   } else {
 | |
|     constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
 | |
|                                             0x1000000u | ' '};
 | |
|     prefix = prefixes[sign];
 | |
|   }
 | |
|   return {abs_value, prefix};
 | |
| }
 | |
| 
 | |
| template <typename Char = char> struct loc_writer {
 | |
|   buffer_appender<Char> out;
 | |
|   const format_specs<Char>& specs;
 | |
|   std::basic_string<Char> sep;
 | |
|   std::string grouping;
 | |
|   std::basic_string<Char> decimal_point;
 | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
 | |
|   auto operator()(T value) -> bool {
 | |
|     auto arg = make_write_int_arg(value, specs.sign);
 | |
|     write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix,
 | |
|               specs, digit_grouping<Char>(grouping, sep));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
 | |
|   auto operator()(T) -> bool {
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T>
 | |
| FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
 | |
|                                         const format_specs<Char>& specs,
 | |
|                                         locale_ref) -> OutputIt {
 | |
|   static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
 | |
|   auto abs_value = arg.abs_value;
 | |
|   auto prefix = arg.prefix;
 | |
|   switch (specs.type) {
 | |
|   case presentation_type::none:
 | |
|   case presentation_type::dec: {
 | |
|     auto num_digits = count_digits(abs_value);
 | |
|     return write_int(
 | |
|         out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
 | |
|           return format_decimal<Char>(it, abs_value, num_digits).end;
 | |
|         });
 | |
|   }
 | |
|   case presentation_type::hex_lower:
 | |
|   case presentation_type::hex_upper: {
 | |
|     bool upper = specs.type == presentation_type::hex_upper;
 | |
|     if (specs.alt)
 | |
|       prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
 | |
|     int num_digits = count_digits<4>(abs_value);
 | |
|     return write_int(
 | |
|         out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
 | |
|           return format_uint<4, Char>(it, abs_value, num_digits, upper);
 | |
|         });
 | |
|   }
 | |
|   case presentation_type::bin_lower:
 | |
|   case presentation_type::bin_upper: {
 | |
|     bool upper = specs.type == presentation_type::bin_upper;
 | |
|     if (specs.alt)
 | |
|       prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
 | |
|     int num_digits = count_digits<1>(abs_value);
 | |
|     return write_int(out, num_digits, prefix, specs,
 | |
|                      [=](reserve_iterator<OutputIt> it) {
 | |
|                        return format_uint<1, Char>(it, abs_value, num_digits);
 | |
|                      });
 | |
|   }
 | |
|   case presentation_type::oct: {
 | |
|     int num_digits = count_digits<3>(abs_value);
 | |
|     // Octal prefix '0' is counted as a digit, so only add it if precision
 | |
|     // is not greater than the number of digits.
 | |
|     if (specs.alt && specs.precision <= num_digits && abs_value != 0)
 | |
|       prefix_append(prefix, '0');
 | |
|     return write_int(out, num_digits, prefix, specs,
 | |
|                      [=](reserve_iterator<OutputIt> it) {
 | |
|                        return format_uint<3, Char>(it, abs_value, num_digits);
 | |
|                      });
 | |
|   }
 | |
|   case presentation_type::chr:
 | |
|     return write_char(out, static_cast<Char>(abs_value), specs);
 | |
|   default:
 | |
|     throw_format_error("invalid format specifier");
 | |
|   }
 | |
|   return out;
 | |
| }
 | |
| template <typename Char, typename OutputIt, typename T>
 | |
| FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(
 | |
|     OutputIt out, write_int_arg<T> arg, const format_specs<Char>& specs,
 | |
|     locale_ref loc) -> OutputIt {
 | |
|   return write_int(out, arg, specs, loc);
 | |
| }
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(is_integral<T>::value &&
 | |
|                         !std::is_same<T, bool>::value &&
 | |
|                         std::is_same<OutputIt, buffer_appender<Char>>::value)>
 | |
| FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
 | |
|                                     const format_specs<Char>& specs,
 | |
|                                     locale_ref loc) -> OutputIt {
 | |
|   if (specs.localized && write_loc(out, value, specs, loc)) return out;
 | |
|   return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs,
 | |
|                             loc);
 | |
| }
 | |
| // An inlined version of write used in format string compilation.
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(is_integral<T>::value &&
 | |
|                         !std::is_same<T, bool>::value &&
 | |
|                         !std::is_same<OutputIt, buffer_appender<Char>>::value)>
 | |
| FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
 | |
|                                     const format_specs<Char>& specs,
 | |
|                                     locale_ref loc) -> OutputIt {
 | |
|   if (specs.localized && write_loc(out, value, specs, loc)) return out;
 | |
|   return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
 | |
| }
 | |
| 
 | |
| // An output iterator that counts the number of objects written to it and
 | |
| // discards them.
 | |
| class counting_iterator {
 | |
|  private:
 | |
|   size_t count_;
 | |
| 
 | |
|  public:
 | |
|   using iterator_category = std::output_iterator_tag;
 | |
|   using difference_type = std::ptrdiff_t;
 | |
|   using pointer = void;
 | |
|   using reference = void;
 | |
|   FMT_UNCHECKED_ITERATOR(counting_iterator);
 | |
| 
 | |
|   struct value_type {
 | |
|     template <typename T> FMT_CONSTEXPR void operator=(const T&) {}
 | |
|   };
 | |
| 
 | |
|   FMT_CONSTEXPR counting_iterator() : count_(0) {}
 | |
| 
 | |
|   FMT_CONSTEXPR auto count() const -> size_t { return count_; }
 | |
| 
 | |
|   FMT_CONSTEXPR auto operator++() -> counting_iterator& {
 | |
|     ++count_;
 | |
|     return *this;
 | |
|   }
 | |
|   FMT_CONSTEXPR auto operator++(int) -> counting_iterator {
 | |
|     auto it = *this;
 | |
|     ++*this;
 | |
|     return it;
 | |
|   }
 | |
| 
 | |
|   FMT_CONSTEXPR friend auto operator+(counting_iterator it, difference_type n)
 | |
|       -> counting_iterator {
 | |
|     it.count_ += static_cast<size_t>(n);
 | |
|     return it;
 | |
|   }
 | |
| 
 | |
|   FMT_CONSTEXPR auto operator*() const -> value_type { return {}; }
 | |
| };
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
 | |
|                          const format_specs<Char>& specs) -> OutputIt {
 | |
|   auto data = s.data();
 | |
|   auto size = s.size();
 | |
|   if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
 | |
|     size = code_point_index(s, to_unsigned(specs.precision));
 | |
|   bool is_debug = specs.type == presentation_type::debug;
 | |
|   size_t width = 0;
 | |
|   if (specs.width != 0) {
 | |
|     if (is_debug)
 | |
|       width = write_escaped_string(counting_iterator{}, s).count();
 | |
|     else
 | |
|       width = compute_width(basic_string_view<Char>(data, size));
 | |
|   }
 | |
|   return write_padded(out, specs, size, width,
 | |
|                       [=](reserve_iterator<OutputIt> it) {
 | |
|                         if (is_debug) return write_escaped_string(it, s);
 | |
|                         return copy_str<Char>(data, data + size, it);
 | |
|                       });
 | |
| }
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR auto write(OutputIt out,
 | |
|                          basic_string_view<type_identity_t<Char>> s,
 | |
|                          const format_specs<Char>& specs, locale_ref)
 | |
|     -> OutputIt {
 | |
|   return write(out, s, specs);
 | |
| }
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
 | |
|                          const format_specs<Char>& specs, locale_ref)
 | |
|     -> OutputIt {
 | |
|   if (specs.type == presentation_type::pointer)
 | |
|     return write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
 | |
|   if (!s) throw_format_error("string pointer is null");
 | |
|   return write(out, basic_string_view<Char>(s), specs, {});
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(is_integral<T>::value &&
 | |
|                         !std::is_same<T, bool>::value &&
 | |
|                         !std::is_same<T, Char>::value)>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
 | |
|   auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
 | |
|   bool negative = is_negative(value);
 | |
|   // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
 | |
|   if (negative) abs_value = ~abs_value + 1;
 | |
|   int num_digits = count_digits(abs_value);
 | |
|   auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
 | |
|   auto it = reserve(out, size);
 | |
|   if (auto ptr = to_pointer<Char>(it, size)) {
 | |
|     if (negative) *ptr++ = static_cast<Char>('-');
 | |
|     format_decimal<Char>(ptr, abs_value, num_digits);
 | |
|     return out;
 | |
|   }
 | |
|   if (negative) *it++ = static_cast<Char>('-');
 | |
|   it = format_decimal<Char>(it, abs_value, num_digits).end;
 | |
|   return base_iterator(out, it);
 | |
| }
 | |
| 
 | |
| // DEPRECATED!
 | |
| template <typename Char>
 | |
| FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
 | |
|                                format_specs<Char>& specs) -> const Char* {
 | |
|   FMT_ASSERT(begin != end, "");
 | |
|   auto align = align::none;
 | |
|   auto p = begin + code_point_length(begin);
 | |
|   if (end - p <= 0) p = begin;
 | |
|   for (;;) {
 | |
|     switch (to_ascii(*p)) {
 | |
|     case '<':
 | |
|       align = align::left;
 | |
|       break;
 | |
|     case '>':
 | |
|       align = align::right;
 | |
|       break;
 | |
|     case '^':
 | |
|       align = align::center;
 | |
|       break;
 | |
|     }
 | |
|     if (align != align::none) {
 | |
|       if (p != begin) {
 | |
|         auto c = *begin;
 | |
|         if (c == '}') return begin;
 | |
|         if (c == '{') {
 | |
|           throw_format_error("invalid fill character '{'");
 | |
|           return begin;
 | |
|         }
 | |
|         specs.fill = {begin, to_unsigned(p - begin)};
 | |
|         begin = p + 1;
 | |
|       } else {
 | |
|         ++begin;
 | |
|       }
 | |
|       break;
 | |
|     } else if (p == begin) {
 | |
|       break;
 | |
|     }
 | |
|     p = begin;
 | |
|   }
 | |
|   specs.align = align;
 | |
|   return begin;
 | |
| }
 | |
| 
 | |
| // A floating-point presentation format.
 | |
| enum class float_format : unsigned char {
 | |
|   general,  // General: exponent notation or fixed point based on magnitude.
 | |
|   exp,      // Exponent notation with the default precision of 6, e.g. 1.2e-3.
 | |
|   fixed,    // Fixed point with the default precision of 6, e.g. 0.0012.
 | |
|   hex
 | |
| };
 | |
| 
 | |
| struct float_specs {
 | |
|   int precision;
 | |
|   float_format format : 8;
 | |
|   sign_t sign : 8;
 | |
|   bool upper : 1;
 | |
|   bool locale : 1;
 | |
|   bool binary32 : 1;
 | |
|   bool showpoint : 1;
 | |
| };
 | |
| 
 | |
| template <typename Char>
 | |
| FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs)
 | |
|     -> float_specs {
 | |
|   auto result = float_specs();
 | |
|   result.showpoint = specs.alt;
 | |
|   result.locale = specs.localized;
 | |
|   switch (specs.type) {
 | |
|   case presentation_type::none:
 | |
|     result.format = float_format::general;
 | |
|     break;
 | |
|   case presentation_type::general_upper:
 | |
|     result.upper = true;
 | |
|     FMT_FALLTHROUGH;
 | |
|   case presentation_type::general_lower:
 | |
|     result.format = float_format::general;
 | |
|     break;
 | |
|   case presentation_type::exp_upper:
 | |
|     result.upper = true;
 | |
|     FMT_FALLTHROUGH;
 | |
|   case presentation_type::exp_lower:
 | |
|     result.format = float_format::exp;
 | |
|     result.showpoint |= specs.precision != 0;
 | |
|     break;
 | |
|   case presentation_type::fixed_upper:
 | |
|     result.upper = true;
 | |
|     FMT_FALLTHROUGH;
 | |
|   case presentation_type::fixed_lower:
 | |
|     result.format = float_format::fixed;
 | |
|     result.showpoint |= specs.precision != 0;
 | |
|     break;
 | |
|   case presentation_type::hexfloat_upper:
 | |
|     result.upper = true;
 | |
|     FMT_FALLTHROUGH;
 | |
|   case presentation_type::hexfloat_lower:
 | |
|     result.format = float_format::hex;
 | |
|     break;
 | |
|   default:
 | |
|     throw_format_error("invalid format specifier");
 | |
|     break;
 | |
|   }
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan,
 | |
|                                      format_specs<Char> specs,
 | |
|                                      const float_specs& fspecs) -> OutputIt {
 | |
|   auto str =
 | |
|       isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf");
 | |
|   constexpr size_t str_size = 3;
 | |
|   auto sign = fspecs.sign;
 | |
|   auto size = str_size + (sign ? 1 : 0);
 | |
|   // Replace '0'-padding with space for non-finite values.
 | |
|   const bool is_zero_fill =
 | |
|       specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
 | |
|   if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
 | |
|   return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
 | |
|     if (sign) *it++ = detail::sign<Char>(sign);
 | |
|     return copy_str<Char>(str, str + str_size, it);
 | |
|   });
 | |
| }
 | |
| 
 | |
| // A decimal floating-point number significand * pow(10, exp).
 | |
| struct big_decimal_fp {
 | |
|   const char* significand;
 | |
|   int significand_size;
 | |
|   int exponent;
 | |
| };
 | |
| 
 | |
| constexpr auto get_significand_size(const big_decimal_fp& f) -> int {
 | |
|   return f.significand_size;
 | |
| }
 | |
| template <typename T>
 | |
| inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int {
 | |
|   return count_digits(f.significand);
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| constexpr auto write_significand(OutputIt out, const char* significand,
 | |
|                                  int significand_size) -> OutputIt {
 | |
|   return copy_str<Char>(significand, significand + significand_size, out);
 | |
| }
 | |
| template <typename Char, typename OutputIt, typename UInt>
 | |
| inline auto write_significand(OutputIt out, UInt significand,
 | |
|                               int significand_size) -> OutputIt {
 | |
|   return format_decimal<Char>(out, significand, significand_size).end;
 | |
| }
 | |
| template <typename Char, typename OutputIt, typename T, typename Grouping>
 | |
| FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
 | |
|                                        int significand_size, int exponent,
 | |
|                                        const Grouping& grouping) -> OutputIt {
 | |
|   if (!grouping.has_separator()) {
 | |
|     out = write_significand<Char>(out, significand, significand_size);
 | |
|     return detail::fill_n(out, exponent, static_cast<Char>('0'));
 | |
|   }
 | |
|   auto buffer = memory_buffer();
 | |
|   write_significand<char>(appender(buffer), significand, significand_size);
 | |
|   detail::fill_n(appender(buffer), exponent, '0');
 | |
|   return grouping.apply(out, string_view(buffer.data(), buffer.size()));
 | |
| }
 | |
| 
 | |
| template <typename Char, typename UInt,
 | |
|           FMT_ENABLE_IF(std::is_integral<UInt>::value)>
 | |
| inline auto write_significand(Char* out, UInt significand, int significand_size,
 | |
|                               int integral_size, Char decimal_point) -> Char* {
 | |
|   if (!decimal_point)
 | |
|     return format_decimal(out, significand, significand_size).end;
 | |
|   out += significand_size + 1;
 | |
|   Char* end = out;
 | |
|   int floating_size = significand_size - integral_size;
 | |
|   for (int i = floating_size / 2; i > 0; --i) {
 | |
|     out -= 2;
 | |
|     copy2(out, digits2(static_cast<std::size_t>(significand % 100)));
 | |
|     significand /= 100;
 | |
|   }
 | |
|   if (floating_size % 2 != 0) {
 | |
|     *--out = static_cast<Char>('0' + significand % 10);
 | |
|     significand /= 10;
 | |
|   }
 | |
|   *--out = decimal_point;
 | |
|   format_decimal(out - integral_size, significand, integral_size);
 | |
|   return end;
 | |
| }
 | |
| 
 | |
| template <typename OutputIt, typename UInt, typename Char,
 | |
|           FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
 | |
| inline auto write_significand(OutputIt out, UInt significand,
 | |
|                               int significand_size, int integral_size,
 | |
|                               Char decimal_point) -> OutputIt {
 | |
|   // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
 | |
|   Char buffer[digits10<UInt>() + 2];
 | |
|   auto end = write_significand(buffer, significand, significand_size,
 | |
|                                integral_size, decimal_point);
 | |
|   return detail::copy_str_noinline<Char>(buffer, end, out);
 | |
| }
 | |
| 
 | |
| template <typename OutputIt, typename Char>
 | |
| FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
 | |
|                                      int significand_size, int integral_size,
 | |
|                                      Char decimal_point) -> OutputIt {
 | |
|   out = detail::copy_str_noinline<Char>(significand,
 | |
|                                         significand + integral_size, out);
 | |
|   if (!decimal_point) return out;
 | |
|   *out++ = decimal_point;
 | |
|   return detail::copy_str_noinline<Char>(significand + integral_size,
 | |
|                                          significand + significand_size, out);
 | |
| }
 | |
| 
 | |
| template <typename OutputIt, typename Char, typename T, typename Grouping>
 | |
| FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
 | |
|                                        int significand_size, int integral_size,
 | |
|                                        Char decimal_point,
 | |
|                                        const Grouping& grouping) -> OutputIt {
 | |
|   if (!grouping.has_separator()) {
 | |
|     return write_significand(out, significand, significand_size, integral_size,
 | |
|                              decimal_point);
 | |
|   }
 | |
|   auto buffer = basic_memory_buffer<Char>();
 | |
|   write_significand(buffer_appender<Char>(buffer), significand,
 | |
|                     significand_size, integral_size, decimal_point);
 | |
|   grouping.apply(
 | |
|       out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
 | |
|   return detail::copy_str_noinline<Char>(buffer.data() + integral_size,
 | |
|                                          buffer.end(), out);
 | |
| }
 | |
| 
 | |
| template <typename OutputIt, typename DecimalFP, typename Char,
 | |
|           typename Grouping = digit_grouping<Char>>
 | |
| FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f,
 | |
|                                     const format_specs<Char>& specs,
 | |
|                                     float_specs fspecs, locale_ref loc)
 | |
|     -> OutputIt {
 | |
|   auto significand = f.significand;
 | |
|   int significand_size = get_significand_size(f);
 | |
|   const Char zero = static_cast<Char>('0');
 | |
|   auto sign = fspecs.sign;
 | |
|   size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
 | |
|   using iterator = reserve_iterator<OutputIt>;
 | |
| 
 | |
|   Char decimal_point =
 | |
|       fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.');
 | |
| 
 | |
|   int output_exp = f.exponent + significand_size - 1;
 | |
|   auto use_exp_format = [=]() {
 | |
|     if (fspecs.format == float_format::exp) return true;
 | |
|     if (fspecs.format != float_format::general) return false;
 | |
|     // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
 | |
|     // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
 | |
|     const int exp_lower = -4, exp_upper = 16;
 | |
|     return output_exp < exp_lower ||
 | |
|            output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
 | |
|   };
 | |
|   if (use_exp_format()) {
 | |
|     int num_zeros = 0;
 | |
|     if (fspecs.showpoint) {
 | |
|       num_zeros = fspecs.precision - significand_size;
 | |
|       if (num_zeros < 0) num_zeros = 0;
 | |
|       size += to_unsigned(num_zeros);
 | |
|     } else if (significand_size == 1) {
 | |
|       decimal_point = Char();
 | |
|     }
 | |
|     auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
 | |
|     int exp_digits = 2;
 | |
|     if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
 | |
| 
 | |
|     size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
 | |
|     char exp_char = fspecs.upper ? 'E' : 'e';
 | |
|     auto write = [=](iterator it) {
 | |
|       if (sign) *it++ = detail::sign<Char>(sign);
 | |
|       // Insert a decimal point after the first digit and add an exponent.
 | |
|       it = write_significand(it, significand, significand_size, 1,
 | |
|                              decimal_point);
 | |
|       if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
 | |
|       *it++ = static_cast<Char>(exp_char);
 | |
|       return write_exponent<Char>(output_exp, it);
 | |
|     };
 | |
|     return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
 | |
|                            : base_iterator(out, write(reserve(out, size)));
 | |
|   }
 | |
| 
 | |
|   int exp = f.exponent + significand_size;
 | |
|   if (f.exponent >= 0) {
 | |
|     // 1234e5 -> 123400000[.0+]
 | |
|     size += to_unsigned(f.exponent);
 | |
|     int num_zeros = fspecs.precision - exp;
 | |
|     abort_fuzzing_if(num_zeros > 5000);
 | |
|     if (fspecs.showpoint) {
 | |
|       ++size;
 | |
|       if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 0;
 | |
|       if (num_zeros > 0) size += to_unsigned(num_zeros);
 | |
|     }
 | |
|     auto grouping = Grouping(loc, fspecs.locale);
 | |
|     size += to_unsigned(grouping.count_separators(exp));
 | |
|     return write_padded<align::right>(out, specs, size, [&](iterator it) {
 | |
|       if (sign) *it++ = detail::sign<Char>(sign);
 | |
|       it = write_significand<Char>(it, significand, significand_size,
 | |
|                                    f.exponent, grouping);
 | |
|       if (!fspecs.showpoint) return it;
 | |
|       *it++ = decimal_point;
 | |
|       return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
 | |
|     });
 | |
|   } else if (exp > 0) {
 | |
|     // 1234e-2 -> 12.34[0+]
 | |
|     int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
 | |
|     size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
 | |
|     auto grouping = Grouping(loc, fspecs.locale);
 | |
|     size += to_unsigned(grouping.count_separators(exp));
 | |
|     return write_padded<align::right>(out, specs, size, [&](iterator it) {
 | |
|       if (sign) *it++ = detail::sign<Char>(sign);
 | |
|       it = write_significand(it, significand, significand_size, exp,
 | |
|                              decimal_point, grouping);
 | |
|       return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
 | |
|     });
 | |
|   }
 | |
|   // 1234e-6 -> 0.001234
 | |
|   int num_zeros = -exp;
 | |
|   if (significand_size == 0 && fspecs.precision >= 0 &&
 | |
|       fspecs.precision < num_zeros) {
 | |
|     num_zeros = fspecs.precision;
 | |
|   }
 | |
|   bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
 | |
|   size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
 | |
|   return write_padded<align::right>(out, specs, size, [&](iterator it) {
 | |
|     if (sign) *it++ = detail::sign<Char>(sign);
 | |
|     *it++ = zero;
 | |
|     if (!pointy) return it;
 | |
|     *it++ = decimal_point;
 | |
|     it = detail::fill_n(it, num_zeros, zero);
 | |
|     return write_significand<Char>(it, significand, significand_size);
 | |
|   });
 | |
| }
 | |
| 
 | |
| template <typename Char> class fallback_digit_grouping {
 | |
|  public:
 | |
|   constexpr fallback_digit_grouping(locale_ref, bool) {}
 | |
| 
 | |
|   constexpr auto has_separator() const -> bool { return false; }
 | |
| 
 | |
|   constexpr auto count_separators(int) const -> int { return 0; }
 | |
| 
 | |
|   template <typename Out, typename C>
 | |
|   constexpr auto apply(Out out, basic_string_view<C>) const -> Out {
 | |
|     return out;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename OutputIt, typename DecimalFP, typename Char>
 | |
| FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f,
 | |
|                                  const format_specs<Char>& specs,
 | |
|                                  float_specs fspecs, locale_ref loc)
 | |
|     -> OutputIt {
 | |
|   if (is_constant_evaluated()) {
 | |
|     return do_write_float<OutputIt, DecimalFP, Char,
 | |
|                           fallback_digit_grouping<Char>>(out, f, specs, fspecs,
 | |
|                                                          loc);
 | |
|   } else {
 | |
|     return do_write_float(out, f, specs, fspecs, loc);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T> constexpr auto isnan(T value) -> bool {
 | |
|   return !(value >= value);  // std::isnan doesn't support __float128.
 | |
| }
 | |
| 
 | |
| template <typename T, typename Enable = void>
 | |
| struct has_isfinite : std::false_type {};
 | |
| 
 | |
| template <typename T>
 | |
| struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>>
 | |
|     : std::true_type {};
 | |
| 
 | |
| template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
 | |
|                                         has_isfinite<T>::value)>
 | |
| FMT_CONSTEXPR20 auto isfinite(T value) -> bool {
 | |
|   constexpr T inf = T(std::numeric_limits<double>::infinity());
 | |
|   if (is_constant_evaluated())
 | |
|     return !detail::isnan(value) && value < inf && value > -inf;
 | |
|   return std::isfinite(value);
 | |
| }
 | |
| template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
 | |
| FMT_CONSTEXPR auto isfinite(T value) -> bool {
 | |
|   T inf = T(std::numeric_limits<double>::infinity());
 | |
|   // std::isfinite doesn't support __float128.
 | |
|   return !detail::isnan(value) && value < inf && value > -inf;
 | |
| }
 | |
| 
 | |
| template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)>
 | |
| FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
 | |
|   if (is_constant_evaluated()) {
 | |
| #ifdef __cpp_if_constexpr
 | |
|     if constexpr (std::numeric_limits<double>::is_iec559) {
 | |
|       auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
 | |
|       return (bits >> (num_bits<uint64_t>() - 1)) != 0;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   return std::signbit(static_cast<double>(value));
 | |
| }
 | |
| 
 | |
| inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
 | |
|   // Adjust fixed precision by exponent because it is relative to decimal
 | |
|   // point.
 | |
|   if (exp10 > 0 && precision > max_value<int>() - exp10)
 | |
|     FMT_THROW(format_error("number is too big"));
 | |
|   precision += exp10;
 | |
| }
 | |
| 
 | |
| class bigint {
 | |
|  private:
 | |
|   // A bigint is stored as an array of bigits (big digits), with bigit at index
 | |
|   // 0 being the least significant one.
 | |
|   using bigit = uint32_t;
 | |
|   using double_bigit = uint64_t;
 | |
|   enum { bigits_capacity = 32 };
 | |
|   basic_memory_buffer<bigit, bigits_capacity> bigits_;
 | |
|   int exp_;
 | |
| 
 | |
|   FMT_CONSTEXPR20 auto operator[](int index) const -> bigit {
 | |
|     return bigits_[to_unsigned(index)];
 | |
|   }
 | |
|   FMT_CONSTEXPR20 auto operator[](int index) -> bigit& {
 | |
|     return bigits_[to_unsigned(index)];
 | |
|   }
 | |
| 
 | |
|   static constexpr const int bigit_bits = num_bits<bigit>();
 | |
| 
 | |
|   friend struct formatter<bigint>;
 | |
| 
 | |
|   FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) {
 | |
|     auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
 | |
|     (*this)[index] = static_cast<bigit>(result);
 | |
|     borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
 | |
|   }
 | |
| 
 | |
|   FMT_CONSTEXPR20 void remove_leading_zeros() {
 | |
|     int num_bigits = static_cast<int>(bigits_.size()) - 1;
 | |
|     while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
 | |
|     bigits_.resize(to_unsigned(num_bigits + 1));
 | |
|   }
 | |
| 
 | |
|   // Computes *this -= other assuming aligned bigints and *this >= other.
 | |
|   FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) {
 | |
|     FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
 | |
|     FMT_ASSERT(compare(*this, other) >= 0, "");
 | |
|     bigit borrow = 0;
 | |
|     int i = other.exp_ - exp_;
 | |
|     for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
 | |
|       subtract_bigits(i, other.bigits_[j], borrow);
 | |
|     while (borrow > 0) subtract_bigits(i, 0, borrow);
 | |
|     remove_leading_zeros();
 | |
|   }
 | |
| 
 | |
|   FMT_CONSTEXPR20 void multiply(uint32_t value) {
 | |
|     const double_bigit wide_value = value;
 | |
|     bigit carry = 0;
 | |
|     for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
 | |
|       double_bigit result = bigits_[i] * wide_value + carry;
 | |
|       bigits_[i] = static_cast<bigit>(result);
 | |
|       carry = static_cast<bigit>(result >> bigit_bits);
 | |
|     }
 | |
|     if (carry != 0) bigits_.push_back(carry);
 | |
|   }
 | |
| 
 | |
|   template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
 | |
|                                          std::is_same<UInt, uint128_t>::value)>
 | |
|   FMT_CONSTEXPR20 void multiply(UInt value) {
 | |
|     using half_uint =
 | |
|         conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
 | |
|     const int shift = num_bits<half_uint>() - bigit_bits;
 | |
|     const UInt lower = static_cast<half_uint>(value);
 | |
|     const UInt upper = value >> num_bits<half_uint>();
 | |
|     UInt carry = 0;
 | |
|     for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
 | |
|       UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
 | |
|       carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
 | |
|               (carry >> bigit_bits);
 | |
|       bigits_[i] = static_cast<bigit>(result);
 | |
|     }
 | |
|     while (carry != 0) {
 | |
|       bigits_.push_back(static_cast<bigit>(carry));
 | |
|       carry >>= bigit_bits;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
 | |
|                                          std::is_same<UInt, uint128_t>::value)>
 | |
|   FMT_CONSTEXPR20 void assign(UInt n) {
 | |
|     size_t num_bigits = 0;
 | |
|     do {
 | |
|       bigits_[num_bigits++] = static_cast<bigit>(n);
 | |
|       n >>= bigit_bits;
 | |
|     } while (n != 0);
 | |
|     bigits_.resize(num_bigits);
 | |
|     exp_ = 0;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   FMT_CONSTEXPR20 bigint() : exp_(0) {}
 | |
|   explicit bigint(uint64_t n) { assign(n); }
 | |
| 
 | |
|   bigint(const bigint&) = delete;
 | |
|   void operator=(const bigint&) = delete;
 | |
| 
 | |
|   FMT_CONSTEXPR20 void assign(const bigint& other) {
 | |
|     auto size = other.bigits_.size();
 | |
|     bigits_.resize(size);
 | |
|     auto data = other.bigits_.data();
 | |
|     copy_str<bigit>(data, data + size, bigits_.data());
 | |
|     exp_ = other.exp_;
 | |
|   }
 | |
| 
 | |
|   template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) {
 | |
|     FMT_ASSERT(n > 0, "");
 | |
|     assign(uint64_or_128_t<Int>(n));
 | |
|   }
 | |
| 
 | |
|   FMT_CONSTEXPR20 auto num_bigits() const -> int {
 | |
|     return static_cast<int>(bigits_.size()) + exp_;
 | |
|   }
 | |
| 
 | |
|   FMT_NOINLINE FMT_CONSTEXPR20 auto operator<<=(int shift) -> bigint& {
 | |
|     FMT_ASSERT(shift >= 0, "");
 | |
|     exp_ += shift / bigit_bits;
 | |
|     shift %= bigit_bits;
 | |
|     if (shift == 0) return *this;
 | |
|     bigit carry = 0;
 | |
|     for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
 | |
|       bigit c = bigits_[i] >> (bigit_bits - shift);
 | |
|       bigits_[i] = (bigits_[i] << shift) + carry;
 | |
|       carry = c;
 | |
|     }
 | |
|     if (carry != 0) bigits_.push_back(carry);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   template <typename Int>
 | |
|   FMT_CONSTEXPR20 auto operator*=(Int value) -> bigint& {
 | |
|     FMT_ASSERT(value > 0, "");
 | |
|     multiply(uint32_or_64_or_128_t<Int>(value));
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   friend FMT_CONSTEXPR20 auto compare(const bigint& lhs, const bigint& rhs)
 | |
|       -> int {
 | |
|     int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
 | |
|     if (num_lhs_bigits != num_rhs_bigits)
 | |
|       return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
 | |
|     int i = static_cast<int>(lhs.bigits_.size()) - 1;
 | |
|     int j = static_cast<int>(rhs.bigits_.size()) - 1;
 | |
|     int end = i - j;
 | |
|     if (end < 0) end = 0;
 | |
|     for (; i >= end; --i, --j) {
 | |
|       bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
 | |
|       if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
 | |
|     }
 | |
|     if (i != j) return i > j ? 1 : -1;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Returns compare(lhs1 + lhs2, rhs).
 | |
|   friend FMT_CONSTEXPR20 auto add_compare(const bigint& lhs1,
 | |
|                                           const bigint& lhs2, const bigint& rhs)
 | |
|       -> int {
 | |
|     auto minimum = [](int a, int b) { return a < b ? a : b; };
 | |
|     auto maximum = [](int a, int b) { return a > b ? a : b; };
 | |
|     int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits());
 | |
|     int num_rhs_bigits = rhs.num_bigits();
 | |
|     if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
 | |
|     if (max_lhs_bigits > num_rhs_bigits) return 1;
 | |
|     auto get_bigit = [](const bigint& n, int i) -> bigit {
 | |
|       return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
 | |
|     };
 | |
|     double_bigit borrow = 0;
 | |
|     int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_);
 | |
|     for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
 | |
|       double_bigit sum =
 | |
|           static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
 | |
|       bigit rhs_bigit = get_bigit(rhs, i);
 | |
|       if (sum > rhs_bigit + borrow) return 1;
 | |
|       borrow = rhs_bigit + borrow - sum;
 | |
|       if (borrow > 1) return -1;
 | |
|       borrow <<= bigit_bits;
 | |
|     }
 | |
|     return borrow != 0 ? -1 : 0;
 | |
|   }
 | |
| 
 | |
|   // Assigns pow(10, exp) to this bigint.
 | |
|   FMT_CONSTEXPR20 void assign_pow10(int exp) {
 | |
|     FMT_ASSERT(exp >= 0, "");
 | |
|     if (exp == 0) return *this = 1;
 | |
|     // Find the top bit.
 | |
|     int bitmask = 1;
 | |
|     while (exp >= bitmask) bitmask <<= 1;
 | |
|     bitmask >>= 1;
 | |
|     // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
 | |
|     // repeated squaring and multiplication.
 | |
|     *this = 5;
 | |
|     bitmask >>= 1;
 | |
|     while (bitmask != 0) {
 | |
|       square();
 | |
|       if ((exp & bitmask) != 0) *this *= 5;
 | |
|       bitmask >>= 1;
 | |
|     }
 | |
|     *this <<= exp;  // Multiply by pow(2, exp) by shifting.
 | |
|   }
 | |
| 
 | |
|   FMT_CONSTEXPR20 void square() {
 | |
|     int num_bigits = static_cast<int>(bigits_.size());
 | |
|     int num_result_bigits = 2 * num_bigits;
 | |
|     basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
 | |
|     bigits_.resize(to_unsigned(num_result_bigits));
 | |
|     auto sum = uint128_t();
 | |
|     for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
 | |
|       // Compute bigit at position bigit_index of the result by adding
 | |
|       // cross-product terms n[i] * n[j] such that i + j == bigit_index.
 | |
|       for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
 | |
|         // Most terms are multiplied twice which can be optimized in the future.
 | |
|         sum += static_cast<double_bigit>(n[i]) * n[j];
 | |
|       }
 | |
|       (*this)[bigit_index] = static_cast<bigit>(sum);
 | |
|       sum >>= num_bits<bigit>();  // Compute the carry.
 | |
|     }
 | |
|     // Do the same for the top half.
 | |
|     for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
 | |
|          ++bigit_index) {
 | |
|       for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
 | |
|         sum += static_cast<double_bigit>(n[i++]) * n[j--];
 | |
|       (*this)[bigit_index] = static_cast<bigit>(sum);
 | |
|       sum >>= num_bits<bigit>();
 | |
|     }
 | |
|     remove_leading_zeros();
 | |
|     exp_ *= 2;
 | |
|   }
 | |
| 
 | |
|   // If this bigint has a bigger exponent than other, adds trailing zero to make
 | |
|   // exponents equal. This simplifies some operations such as subtraction.
 | |
|   FMT_CONSTEXPR20 void align(const bigint& other) {
 | |
|     int exp_difference = exp_ - other.exp_;
 | |
|     if (exp_difference <= 0) return;
 | |
|     int num_bigits = static_cast<int>(bigits_.size());
 | |
|     bigits_.resize(to_unsigned(num_bigits + exp_difference));
 | |
|     for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
 | |
|       bigits_[j] = bigits_[i];
 | |
|     std::uninitialized_fill_n(bigits_.data(), exp_difference, 0u);
 | |
|     exp_ -= exp_difference;
 | |
|   }
 | |
| 
 | |
|   // Divides this bignum by divisor, assigning the remainder to this and
 | |
|   // returning the quotient.
 | |
|   FMT_CONSTEXPR20 auto divmod_assign(const bigint& divisor) -> int {
 | |
|     FMT_ASSERT(this != &divisor, "");
 | |
|     if (compare(*this, divisor) < 0) return 0;
 | |
|     FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
 | |
|     align(divisor);
 | |
|     int quotient = 0;
 | |
|     do {
 | |
|       subtract_aligned(divisor);
 | |
|       ++quotient;
 | |
|     } while (compare(*this, divisor) >= 0);
 | |
|     return quotient;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // format_dragon flags.
 | |
| enum dragon {
 | |
|   predecessor_closer = 1,
 | |
|   fixup = 2,  // Run fixup to correct exp10 which can be off by one.
 | |
|   fixed = 4,
 | |
| };
 | |
| 
 | |
| // Formats a floating-point number using a variation of the Fixed-Precision
 | |
| // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
 | |
| // https://fmt.dev/papers/p372-steele.pdf.
 | |
| FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
 | |
|                                           unsigned flags, int num_digits,
 | |
|                                           buffer<char>& buf, int& exp10) {
 | |
|   bigint numerator;    // 2 * R in (FPP)^2.
 | |
|   bigint denominator;  // 2 * S in (FPP)^2.
 | |
|   // lower and upper are differences between value and corresponding boundaries.
 | |
|   bigint lower;             // (M^- in (FPP)^2).
 | |
|   bigint upper_store;       // upper's value if different from lower.
 | |
|   bigint* upper = nullptr;  // (M^+ in (FPP)^2).
 | |
|   // Shift numerator and denominator by an extra bit or two (if lower boundary
 | |
|   // is closer) to make lower and upper integers. This eliminates multiplication
 | |
|   // by 2 during later computations.
 | |
|   bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
 | |
|   int shift = is_predecessor_closer ? 2 : 1;
 | |
|   if (value.e >= 0) {
 | |
|     numerator = value.f;
 | |
|     numerator <<= value.e + shift;
 | |
|     lower = 1;
 | |
|     lower <<= value.e;
 | |
|     if (is_predecessor_closer) {
 | |
|       upper_store = 1;
 | |
|       upper_store <<= value.e + 1;
 | |
|       upper = &upper_store;
 | |
|     }
 | |
|     denominator.assign_pow10(exp10);
 | |
|     denominator <<= shift;
 | |
|   } else if (exp10 < 0) {
 | |
|     numerator.assign_pow10(-exp10);
 | |
|     lower.assign(numerator);
 | |
|     if (is_predecessor_closer) {
 | |
|       upper_store.assign(numerator);
 | |
|       upper_store <<= 1;
 | |
|       upper = &upper_store;
 | |
|     }
 | |
|     numerator *= value.f;
 | |
|     numerator <<= shift;
 | |
|     denominator = 1;
 | |
|     denominator <<= shift - value.e;
 | |
|   } else {
 | |
|     numerator = value.f;
 | |
|     numerator <<= shift;
 | |
|     denominator.assign_pow10(exp10);
 | |
|     denominator <<= shift - value.e;
 | |
|     lower = 1;
 | |
|     if (is_predecessor_closer) {
 | |
|       upper_store = 1ULL << 1;
 | |
|       upper = &upper_store;
 | |
|     }
 | |
|   }
 | |
|   int even = static_cast<int>((value.f & 1) == 0);
 | |
|   if (!upper) upper = &lower;
 | |
|   bool shortest = num_digits < 0;
 | |
|   if ((flags & dragon::fixup) != 0) {
 | |
|     if (add_compare(numerator, *upper, denominator) + even <= 0) {
 | |
|       --exp10;
 | |
|       numerator *= 10;
 | |
|       if (num_digits < 0) {
 | |
|         lower *= 10;
 | |
|         if (upper != &lower) *upper *= 10;
 | |
|       }
 | |
|     }
 | |
|     if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
 | |
|   }
 | |
|   // Invariant: value == (numerator / denominator) * pow(10, exp10).
 | |
|   if (shortest) {
 | |
|     // Generate the shortest representation.
 | |
|     num_digits = 0;
 | |
|     char* data = buf.data();
 | |
|     for (;;) {
 | |
|       int digit = numerator.divmod_assign(denominator);
 | |
|       bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower.
 | |
|       // numerator + upper >[=] pow10:
 | |
|       bool high = add_compare(numerator, *upper, denominator) + even > 0;
 | |
|       data[num_digits++] = static_cast<char>('0' + digit);
 | |
|       if (low || high) {
 | |
|         if (!low) {
 | |
|           ++data[num_digits - 1];
 | |
|         } else if (high) {
 | |
|           int result = add_compare(numerator, numerator, denominator);
 | |
|           // Round half to even.
 | |
|           if (result > 0 || (result == 0 && (digit % 2) != 0))
 | |
|             ++data[num_digits - 1];
 | |
|         }
 | |
|         buf.try_resize(to_unsigned(num_digits));
 | |
|         exp10 -= num_digits - 1;
 | |
|         return;
 | |
|       }
 | |
|       numerator *= 10;
 | |
|       lower *= 10;
 | |
|       if (upper != &lower) *upper *= 10;
 | |
|     }
 | |
|   }
 | |
|   // Generate the given number of digits.
 | |
|   exp10 -= num_digits - 1;
 | |
|   if (num_digits <= 0) {
 | |
|     denominator *= 10;
 | |
|     auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
 | |
|     buf.push_back(digit);
 | |
|     return;
 | |
|   }
 | |
|   buf.try_resize(to_unsigned(num_digits));
 | |
|   for (int i = 0; i < num_digits - 1; ++i) {
 | |
|     int digit = numerator.divmod_assign(denominator);
 | |
|     buf[i] = static_cast<char>('0' + digit);
 | |
|     numerator *= 10;
 | |
|   }
 | |
|   int digit = numerator.divmod_assign(denominator);
 | |
|   auto result = add_compare(numerator, numerator, denominator);
 | |
|   if (result > 0 || (result == 0 && (digit % 2) != 0)) {
 | |
|     if (digit == 9) {
 | |
|       const auto overflow = '0' + 10;
 | |
|       buf[num_digits - 1] = overflow;
 | |
|       // Propagate the carry.
 | |
|       for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
 | |
|         buf[i] = '0';
 | |
|         ++buf[i - 1];
 | |
|       }
 | |
|       if (buf[0] == overflow) {
 | |
|         buf[0] = '1';
 | |
|         if ((flags & dragon::fixed) != 0)
 | |
|           buf.push_back('0');
 | |
|         else
 | |
|           ++exp10;
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|     ++digit;
 | |
|   }
 | |
|   buf[num_digits - 1] = static_cast<char>('0' + digit);
 | |
| }
 | |
| 
 | |
| // Formats a floating-point number using the hexfloat format.
 | |
| template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
 | |
| FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
 | |
|                                      float_specs specs, buffer<char>& buf) {
 | |
|   // float is passed as double to reduce the number of instantiations and to
 | |
|   // simplify implementation.
 | |
|   static_assert(!std::is_same<Float, float>::value, "");
 | |
| 
 | |
|   using info = dragonbox::float_info<Float>;
 | |
| 
 | |
|   // Assume Float is in the format [sign][exponent][significand].
 | |
|   using carrier_uint = typename info::carrier_uint;
 | |
| 
 | |
|   constexpr auto num_float_significand_bits =
 | |
|       detail::num_significand_bits<Float>();
 | |
| 
 | |
|   basic_fp<carrier_uint> f(value);
 | |
|   f.e += num_float_significand_bits;
 | |
|   if (!has_implicit_bit<Float>()) --f.e;
 | |
| 
 | |
|   constexpr auto num_fraction_bits =
 | |
|       num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0);
 | |
|   constexpr auto num_xdigits = (num_fraction_bits + 3) / 4;
 | |
| 
 | |
|   constexpr auto leading_shift = ((num_xdigits - 1) * 4);
 | |
|   const auto leading_mask = carrier_uint(0xF) << leading_shift;
 | |
|   const auto leading_xdigit =
 | |
|       static_cast<uint32_t>((f.f & leading_mask) >> leading_shift);
 | |
|   if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1);
 | |
| 
 | |
|   int print_xdigits = num_xdigits - 1;
 | |
|   if (precision >= 0 && print_xdigits > precision) {
 | |
|     const int shift = ((print_xdigits - precision - 1) * 4);
 | |
|     const auto mask = carrier_uint(0xF) << shift;
 | |
|     const auto v = static_cast<uint32_t>((f.f & mask) >> shift);
 | |
| 
 | |
|     if (v >= 8) {
 | |
|       const auto inc = carrier_uint(1) << (shift + 4);
 | |
|       f.f += inc;
 | |
|       f.f &= ~(inc - 1);
 | |
|     }
 | |
| 
 | |
|     // Check long double overflow
 | |
|     if (!has_implicit_bit<Float>()) {
 | |
|       const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
 | |
|       if ((f.f & implicit_bit) == implicit_bit) {
 | |
|         f.f >>= 4;
 | |
|         f.e += 4;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     print_xdigits = precision;
 | |
|   }
 | |
| 
 | |
|   char xdigits[num_bits<carrier_uint>() / 4];
 | |
|   detail::fill_n(xdigits, sizeof(xdigits), '0');
 | |
|   format_uint<4>(xdigits, f.f, num_xdigits, specs.upper);
 | |
| 
 | |
|   // Remove zero tail
 | |
|   while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits;
 | |
| 
 | |
|   buf.push_back('0');
 | |
|   buf.push_back(specs.upper ? 'X' : 'x');
 | |
|   buf.push_back(xdigits[0]);
 | |
|   if (specs.showpoint || print_xdigits > 0 || print_xdigits < precision)
 | |
|     buf.push_back('.');
 | |
|   buf.append(xdigits + 1, xdigits + 1 + print_xdigits);
 | |
|   for (; print_xdigits < precision; ++print_xdigits) buf.push_back('0');
 | |
| 
 | |
|   buf.push_back(specs.upper ? 'P' : 'p');
 | |
| 
 | |
|   uint32_t abs_e;
 | |
|   if (f.e < 0) {
 | |
|     buf.push_back('-');
 | |
|     abs_e = static_cast<uint32_t>(-f.e);
 | |
|   } else {
 | |
|     buf.push_back('+');
 | |
|     abs_e = static_cast<uint32_t>(f.e);
 | |
|   }
 | |
|   format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e));
 | |
| }
 | |
| 
 | |
| template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
 | |
| FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
 | |
|                                      float_specs specs, buffer<char>& buf) {
 | |
|   format_hexfloat(static_cast<double>(value), precision, specs, buf);
 | |
| }
 | |
| 
 | |
| constexpr auto fractional_part_rounding_thresholds(int index) -> uint32_t {
 | |
|   // For checking rounding thresholds.
 | |
|   // The kth entry is chosen to be the smallest integer such that the
 | |
|   // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
 | |
|   // It is equal to ceil(2^31 + 2^32/10^(k + 1)).
 | |
|   // These are stored in a string literal because we cannot have static arrays
 | |
|   // in constexpr functions and non-static ones are poorly optimized.
 | |
|   return U"\x9999999a\x828f5c29\x80418938\x80068db9\x8000a7c6\x800010c7"
 | |
|          U"\x800001ae\x8000002b"[index];
 | |
| }
 | |
| 
 | |
| template <typename Float>
 | |
| FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
 | |
|                                   buffer<char>& buf) -> int {
 | |
|   // float is passed as double to reduce the number of instantiations.
 | |
|   static_assert(!std::is_same<Float, float>::value, "");
 | |
|   FMT_ASSERT(value >= 0, "value is negative");
 | |
|   auto converted_value = convert_float(value);
 | |
| 
 | |
|   const bool fixed = specs.format == float_format::fixed;
 | |
|   if (value <= 0) {  // <= instead of == to silence a warning.
 | |
|     if (precision <= 0 || !fixed) {
 | |
|       buf.push_back('0');
 | |
|       return 0;
 | |
|     }
 | |
|     buf.try_resize(to_unsigned(precision));
 | |
|     fill_n(buf.data(), precision, '0');
 | |
|     return -precision;
 | |
|   }
 | |
| 
 | |
|   int exp = 0;
 | |
|   bool use_dragon = true;
 | |
|   unsigned dragon_flags = 0;
 | |
|   if (!is_fast_float<Float>() || is_constant_evaluated()) {
 | |
|     const auto inv_log2_10 = 0.3010299956639812;  // 1 / log2(10)
 | |
|     using info = dragonbox::float_info<decltype(converted_value)>;
 | |
|     const auto f = basic_fp<typename info::carrier_uint>(converted_value);
 | |
|     // Compute exp, an approximate power of 10, such that
 | |
|     //   10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
 | |
|     // This is based on log10(value) == log2(value) / log2(10) and approximation
 | |
|     // of log2(value) by e + num_fraction_bits idea from double-conversion.
 | |
|     auto e = (f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10;
 | |
|     exp = static_cast<int>(e);
 | |
|     if (e > exp) ++exp;  // Compute ceil.
 | |
|     dragon_flags = dragon::fixup;
 | |
|   } else if (precision < 0) {
 | |
|     // Use Dragonbox for the shortest format.
 | |
|     if (specs.binary32) {
 | |
|       auto dec = dragonbox::to_decimal(static_cast<float>(value));
 | |
|       write<char>(buffer_appender<char>(buf), dec.significand);
 | |
|       return dec.exponent;
 | |
|     }
 | |
|     auto dec = dragonbox::to_decimal(static_cast<double>(value));
 | |
|     write<char>(buffer_appender<char>(buf), dec.significand);
 | |
|     return dec.exponent;
 | |
|   } else {
 | |
|     // Extract significand bits and exponent bits.
 | |
|     using info = dragonbox::float_info<double>;
 | |
|     auto br = bit_cast<uint64_t>(static_cast<double>(value));
 | |
| 
 | |
|     const uint64_t significand_mask =
 | |
|         (static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1;
 | |
|     uint64_t significand = (br & significand_mask);
 | |
|     int exponent = static_cast<int>((br & exponent_mask<double>()) >>
 | |
|                                     num_significand_bits<double>());
 | |
| 
 | |
|     if (exponent != 0) {  // Check if normal.
 | |
|       exponent -= exponent_bias<double>() + num_significand_bits<double>();
 | |
|       significand |=
 | |
|           (static_cast<uint64_t>(1) << num_significand_bits<double>());
 | |
|       significand <<= 1;
 | |
|     } else {
 | |
|       // Normalize subnormal inputs.
 | |
|       FMT_ASSERT(significand != 0, "zeros should not appear here");
 | |
|       int shift = countl_zero(significand);
 | |
|       FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
 | |
|                  "");
 | |
|       shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2);
 | |
|       exponent = (std::numeric_limits<double>::min_exponent -
 | |
|                   num_significand_bits<double>()) -
 | |
|                  shift;
 | |
|       significand <<= shift;
 | |
|     }
 | |
| 
 | |
|     // Compute the first several nonzero decimal significand digits.
 | |
|     // We call the number we get the first segment.
 | |
|     const int k = info::kappa - dragonbox::floor_log10_pow2(exponent);
 | |
|     exp = -k;
 | |
|     const int beta = exponent + dragonbox::floor_log2_pow10(k);
 | |
|     uint64_t first_segment;
 | |
|     bool has_more_segments;
 | |
|     int digits_in_the_first_segment;
 | |
|     {
 | |
|       const auto r = dragonbox::umul192_upper128(
 | |
|           significand << beta, dragonbox::get_cached_power(k));
 | |
|       first_segment = r.high();
 | |
|       has_more_segments = r.low() != 0;
 | |
| 
 | |
|       // The first segment can have 18 ~ 19 digits.
 | |
|       if (first_segment >= 1000000000000000000ULL) {
 | |
|         digits_in_the_first_segment = 19;
 | |
|       } else {
 | |
|         // When it is of 18-digits, we align it to 19-digits by adding a bogus
 | |
|         // zero at the end.
 | |
|         digits_in_the_first_segment = 18;
 | |
|         first_segment *= 10;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Compute the actual number of decimal digits to print.
 | |
|     if (fixed) adjust_precision(precision, exp + digits_in_the_first_segment);
 | |
| 
 | |
|     // Use Dragon4 only when there might be not enough digits in the first
 | |
|     // segment.
 | |
|     if (digits_in_the_first_segment > precision) {
 | |
|       use_dragon = false;
 | |
| 
 | |
|       if (precision <= 0) {
 | |
|         exp += digits_in_the_first_segment;
 | |
| 
 | |
|         if (precision < 0) {
 | |
|           // Nothing to do, since all we have are just leading zeros.
 | |
|           buf.try_resize(0);
 | |
|         } else {
 | |
|           // We may need to round-up.
 | |
|           buf.try_resize(1);
 | |
|           if ((first_segment | static_cast<uint64_t>(has_more_segments)) >
 | |
|               5000000000000000000ULL) {
 | |
|             buf[0] = '1';
 | |
|           } else {
 | |
|             buf[0] = '0';
 | |
|           }
 | |
|         }
 | |
|       }  // precision <= 0
 | |
|       else {
 | |
|         exp += digits_in_the_first_segment - precision;
 | |
| 
 | |
|         // When precision > 0, we divide the first segment into three
 | |
|         // subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits
 | |
|         // in 32-bits which usually allows faster calculation than in
 | |
|         // 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize
 | |
|         // division-by-constant for large 64-bit divisors, we do it here
 | |
|         // manually. The magic number 7922816251426433760 below is equal to
 | |
|         // ceil(2^(64+32) / 10^10).
 | |
|         const uint32_t first_subsegment = static_cast<uint32_t>(
 | |
|             dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >>
 | |
|             32);
 | |
|         const uint64_t second_third_subsegments =
 | |
|             first_segment - first_subsegment * 10000000000ULL;
 | |
| 
 | |
|         uint64_t prod;
 | |
|         uint32_t digits;
 | |
|         bool should_round_up;
 | |
|         int number_of_digits_to_print = precision > 9 ? 9 : precision;
 | |
| 
 | |
|         // Print a 9-digits subsegment, either the first or the second.
 | |
|         auto print_subsegment = [&](uint32_t subsegment, char* buffer) {
 | |
|           int number_of_digits_printed = 0;
 | |
| 
 | |
|           // If we want to print an odd number of digits from the subsegment,
 | |
|           if ((number_of_digits_to_print & 1) != 0) {
 | |
|             // Convert to 64-bit fixed-point fractional form with 1-digit
 | |
|             // integer part. The magic number 720575941 is a good enough
 | |
|             // approximation of 2^(32 + 24) / 10^8; see
 | |
|             // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
 | |
|             // for details.
 | |
|             prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1;
 | |
|             digits = static_cast<uint32_t>(prod >> 32);
 | |
|             *buffer = static_cast<char>('0' + digits);
 | |
|             number_of_digits_printed++;
 | |
|           }
 | |
|           // If we want to print an even number of digits from the
 | |
|           // first_subsegment,
 | |
|           else {
 | |
|             // Convert to 64-bit fixed-point fractional form with 2-digits
 | |
|             // integer part. The magic number 450359963 is a good enough
 | |
|             // approximation of 2^(32 + 20) / 10^7; see
 | |
|             // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
 | |
|             // for details.
 | |
|             prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1;
 | |
|             digits = static_cast<uint32_t>(prod >> 32);
 | |
|             copy2(buffer, digits2(digits));
 | |
|             number_of_digits_printed += 2;
 | |
|           }
 | |
| 
 | |
|           // Print all digit pairs.
 | |
|           while (number_of_digits_printed < number_of_digits_to_print) {
 | |
|             prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100);
 | |
|             digits = static_cast<uint32_t>(prod >> 32);
 | |
|             copy2(buffer + number_of_digits_printed, digits2(digits));
 | |
|             number_of_digits_printed += 2;
 | |
|           }
 | |
|         };
 | |
| 
 | |
|         // Print first subsegment.
 | |
|         print_subsegment(first_subsegment, buf.data());
 | |
| 
 | |
|         // Perform rounding if the first subsegment is the last subsegment to
 | |
|         // print.
 | |
|         if (precision <= 9) {
 | |
|           // Rounding inside the subsegment.
 | |
|           // We round-up if:
 | |
|           //  - either the fractional part is strictly larger than 1/2, or
 | |
|           //  - the fractional part is exactly 1/2 and the last digit is odd.
 | |
|           // We rely on the following observations:
 | |
|           //  - If fractional_part >= threshold, then the fractional part is
 | |
|           //    strictly larger than 1/2.
 | |
|           //  - If the MSB of fractional_part is set, then the fractional part
 | |
|           //    must be at least 1/2.
 | |
|           //  - When the MSB of fractional_part is set, either
 | |
|           //    second_third_subsegments being nonzero or has_more_segments
 | |
|           //    being true means there are further digits not printed, so the
 | |
|           //    fractional part is strictly larger than 1/2.
 | |
|           if (precision < 9) {
 | |
|             uint32_t fractional_part = static_cast<uint32_t>(prod);
 | |
|             should_round_up =
 | |
|                 fractional_part >= fractional_part_rounding_thresholds(
 | |
|                                        8 - number_of_digits_to_print) ||
 | |
|                 ((fractional_part >> 31) &
 | |
|                  ((digits & 1) | (second_third_subsegments != 0) |
 | |
|                   has_more_segments)) != 0;
 | |
|           }
 | |
|           // Rounding at the subsegment boundary.
 | |
|           // In this case, the fractional part is at least 1/2 if and only if
 | |
|           // second_third_subsegments >= 5000000000ULL, and is strictly larger
 | |
|           // than 1/2 if we further have either second_third_subsegments >
 | |
|           // 5000000000ULL or has_more_segments == true.
 | |
|           else {
 | |
|             should_round_up = second_third_subsegments > 5000000000ULL ||
 | |
|                               (second_third_subsegments == 5000000000ULL &&
 | |
|                                ((digits & 1) != 0 || has_more_segments));
 | |
|           }
 | |
|         }
 | |
|         // Otherwise, print the second subsegment.
 | |
|         else {
 | |
|           // Compilers are not aware of how to leverage the maximum value of
 | |
|           // second_third_subsegments to find out a better magic number which
 | |
|           // allows us to eliminate an additional shift. 1844674407370955162 =
 | |
|           // ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))).
 | |
|           const uint32_t second_subsegment =
 | |
|               static_cast<uint32_t>(dragonbox::umul128_upper64(
 | |
|                   second_third_subsegments, 1844674407370955162ULL));
 | |
|           const uint32_t third_subsegment =
 | |
|               static_cast<uint32_t>(second_third_subsegments) -
 | |
|               second_subsegment * 10;
 | |
| 
 | |
|           number_of_digits_to_print = precision - 9;
 | |
|           print_subsegment(second_subsegment, buf.data() + 9);
 | |
| 
 | |
|           // Rounding inside the subsegment.
 | |
|           if (precision < 18) {
 | |
|             // The condition third_subsegment != 0 implies that the segment was
 | |
|             // of 19 digits, so in this case the third segment should be
 | |
|             // consisting of a genuine digit from the input.
 | |
|             uint32_t fractional_part = static_cast<uint32_t>(prod);
 | |
|             should_round_up =
 | |
|                 fractional_part >= fractional_part_rounding_thresholds(
 | |
|                                        8 - number_of_digits_to_print) ||
 | |
|                 ((fractional_part >> 31) &
 | |
|                  ((digits & 1) | (third_subsegment != 0) |
 | |
|                   has_more_segments)) != 0;
 | |
|           }
 | |
|           // Rounding at the subsegment boundary.
 | |
|           else {
 | |
|             // In this case, the segment must be of 19 digits, thus
 | |
|             // the third subsegment should be consisting of a genuine digit from
 | |
|             // the input.
 | |
|             should_round_up = third_subsegment > 5 ||
 | |
|                               (third_subsegment == 5 &&
 | |
|                                ((digits & 1) != 0 || has_more_segments));
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Round-up if necessary.
 | |
|         if (should_round_up) {
 | |
|           ++buf[precision - 1];
 | |
|           for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) {
 | |
|             buf[i] = '0';
 | |
|             ++buf[i - 1];
 | |
|           }
 | |
|           if (buf[0] > '9') {
 | |
|             buf[0] = '1';
 | |
|             if (fixed)
 | |
|               buf[precision++] = '0';
 | |
|             else
 | |
|               ++exp;
 | |
|           }
 | |
|         }
 | |
|         buf.try_resize(to_unsigned(precision));
 | |
|       }
 | |
|     }  // if (digits_in_the_first_segment > precision)
 | |
|     else {
 | |
|       // Adjust the exponent for its use in Dragon4.
 | |
|       exp += digits_in_the_first_segment - 1;
 | |
|     }
 | |
|   }
 | |
|   if (use_dragon) {
 | |
|     auto f = basic_fp<uint128_t>();
 | |
|     bool is_predecessor_closer = specs.binary32
 | |
|                                      ? f.assign(static_cast<float>(value))
 | |
|                                      : f.assign(converted_value);
 | |
|     if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
 | |
|     if (fixed) dragon_flags |= dragon::fixed;
 | |
|     // Limit precision to the maximum possible number of significant digits in
 | |
|     // an IEEE754 double because we don't need to generate zeros.
 | |
|     const int max_double_digits = 767;
 | |
|     if (precision > max_double_digits) precision = max_double_digits;
 | |
|     format_dragon(f, dragon_flags, precision, buf, exp);
 | |
|   }
 | |
|   if (!fixed && !specs.showpoint) {
 | |
|     // Remove trailing zeros.
 | |
|     auto num_digits = buf.size();
 | |
|     while (num_digits > 0 && buf[num_digits - 1] == '0') {
 | |
|       --num_digits;
 | |
|       ++exp;
 | |
|     }
 | |
|     buf.try_resize(num_digits);
 | |
|   }
 | |
|   return exp;
 | |
| }
 | |
| template <typename Char, typename OutputIt, typename T>
 | |
| FMT_CONSTEXPR20 auto write_float(OutputIt out, T value,
 | |
|                                  format_specs<Char> specs, locale_ref loc)
 | |
|     -> OutputIt {
 | |
|   float_specs fspecs = parse_float_type_spec(specs);
 | |
|   fspecs.sign = specs.sign;
 | |
|   if (detail::signbit(value)) {  // value < 0 is false for NaN so use signbit.
 | |
|     fspecs.sign = sign::minus;
 | |
|     value = -value;
 | |
|   } else if (fspecs.sign == sign::minus) {
 | |
|     fspecs.sign = sign::none;
 | |
|   }
 | |
| 
 | |
|   if (!detail::isfinite(value))
 | |
|     return write_nonfinite(out, detail::isnan(value), specs, fspecs);
 | |
| 
 | |
|   if (specs.align == align::numeric && fspecs.sign) {
 | |
|     auto it = reserve(out, 1);
 | |
|     *it++ = detail::sign<Char>(fspecs.sign);
 | |
|     out = base_iterator(out, it);
 | |
|     fspecs.sign = sign::none;
 | |
|     if (specs.width != 0) --specs.width;
 | |
|   }
 | |
| 
 | |
|   memory_buffer buffer;
 | |
|   if (fspecs.format == float_format::hex) {
 | |
|     if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign));
 | |
|     format_hexfloat(convert_float(value), specs.precision, fspecs, buffer);
 | |
|     return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
 | |
|                                      specs);
 | |
|   }
 | |
|   int precision = specs.precision >= 0 || specs.type == presentation_type::none
 | |
|                       ? specs.precision
 | |
|                       : 6;
 | |
|   if (fspecs.format == float_format::exp) {
 | |
|     if (precision == max_value<int>())
 | |
|       throw_format_error("number is too big");
 | |
|     else
 | |
|       ++precision;
 | |
|   } else if (fspecs.format != float_format::fixed && precision == 0) {
 | |
|     precision = 1;
 | |
|   }
 | |
|   if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
 | |
|   int exp = format_float(convert_float(value), precision, fspecs, buffer);
 | |
|   fspecs.precision = precision;
 | |
|   auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
 | |
|   return write_float(out, f, specs, fspecs, loc);
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(is_floating_point<T>::value)>
 | |
| FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs<Char> specs,
 | |
|                            locale_ref loc = {}) -> OutputIt {
 | |
|   if (const_check(!is_supported_floating_point(value))) return out;
 | |
|   return specs.localized && write_loc(out, value, specs, loc)
 | |
|              ? out
 | |
|              : write_float(out, value, specs, loc);
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(is_fast_float<T>::value)>
 | |
| FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
 | |
|   if (is_constant_evaluated()) return write(out, value, format_specs<Char>());
 | |
|   if (const_check(!is_supported_floating_point(value))) return out;
 | |
| 
 | |
|   auto fspecs = float_specs();
 | |
|   if (detail::signbit(value)) {
 | |
|     fspecs.sign = sign::minus;
 | |
|     value = -value;
 | |
|   }
 | |
| 
 | |
|   constexpr auto specs = format_specs<Char>();
 | |
|   using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
 | |
|   using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint;
 | |
|   floaty_uint mask = exponent_mask<floaty>();
 | |
|   if ((bit_cast<floaty_uint>(value) & mask) == mask)
 | |
|     return write_nonfinite(out, std::isnan(value), specs, fspecs);
 | |
| 
 | |
|   auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
 | |
|   return write_float(out, dec, specs, fspecs, {});
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(is_floating_point<T>::value &&
 | |
|                         !is_fast_float<T>::value)>
 | |
| inline auto write(OutputIt out, T value) -> OutputIt {
 | |
|   return write(out, value, format_specs<Char>());
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| auto write(OutputIt out, monostate, format_specs<Char> = {}, locale_ref = {})
 | |
|     -> OutputIt {
 | |
|   FMT_ASSERT(false, "");
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
 | |
|     -> OutputIt {
 | |
|   auto it = reserve(out, value.size());
 | |
|   it = copy_str_noinline<Char>(value.begin(), value.end(), it);
 | |
|   return base_iterator(out, it);
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(is_string<T>::value)>
 | |
| constexpr auto write(OutputIt out, const T& value) -> OutputIt {
 | |
|   return write<Char>(out, to_string_view(value));
 | |
| }
 | |
| 
 | |
| // FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
 | |
| template <
 | |
|     typename Char, typename OutputIt, typename T,
 | |
|     bool check =
 | |
|         std::is_enum<T>::value && !std::is_same<T, Char>::value &&
 | |
|         mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
 | |
|             type::custom_type,
 | |
|     FMT_ENABLE_IF(check)>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
 | |
|   return write<Char>(out, static_cast<underlying_t<T>>(value));
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(std::is_same<T, bool>::value)>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, T value,
 | |
|                          const format_specs<Char>& specs = {}, locale_ref = {})
 | |
|     -> OutputIt {
 | |
|   return specs.type != presentation_type::none &&
 | |
|                  specs.type != presentation_type::string
 | |
|              ? write(out, value ? 1 : 0, specs, {})
 | |
|              : write_bytes(out, value ? "true" : "false", specs);
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
 | |
|   auto it = reserve(out, 1);
 | |
|   *it++ = value;
 | |
|   return base_iterator(out, it);
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt>
 | |
| FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
 | |
|     -> OutputIt {
 | |
|   if (value) return write(out, basic_string_view<Char>(value));
 | |
|   throw_format_error("string pointer is null");
 | |
|   return out;
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           FMT_ENABLE_IF(std::is_same<T, void>::value)>
 | |
| auto write(OutputIt out, const T* value, const format_specs<Char>& specs = {},
 | |
|            locale_ref = {}) -> OutputIt {
 | |
|   return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs);
 | |
| }
 | |
| 
 | |
| // A write overload that handles implicit conversions.
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           typename Context = basic_format_context<OutputIt, Char>>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t<
 | |
|     std::is_class<T>::value && !is_string<T>::value &&
 | |
|         !is_floating_point<T>::value && !std::is_same<T, Char>::value &&
 | |
|         !std::is_same<T, remove_cvref_t<decltype(arg_mapper<Context>().map(
 | |
|                              value))>>::value,
 | |
|     OutputIt> {
 | |
|   return write<Char>(out, arg_mapper<Context>().map(value));
 | |
| }
 | |
| 
 | |
| template <typename Char, typename OutputIt, typename T,
 | |
|           typename Context = basic_format_context<OutputIt, Char>>
 | |
| FMT_CONSTEXPR auto write(OutputIt out, const T& value)
 | |
|     -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type,
 | |
|                    OutputIt> {
 | |
|   auto formatter = typename Context::template formatter_type<T>();
 | |
|   auto parse_ctx = typename Context::parse_context_type({});
 | |
|   formatter.parse(parse_ctx);
 | |
|   auto ctx = Context(out, {}, {});
 | |
|   return formatter.format(value, ctx);
 | |
| }
 | |
| 
 | |
| // An argument visitor that formats the argument and writes it via the output
 | |
| // iterator. It's a class and not a generic lambda for compatibility with C++11.
 | |
| template <typename Char> struct default_arg_formatter {
 | |
|   using iterator = buffer_appender<Char>;
 | |
|   using context = buffer_context<Char>;
 | |
| 
 | |
|   iterator out;
 | |
|   basic_format_args<context> args;
 | |
|   locale_ref loc;
 | |
| 
 | |
|   template <typename T> auto operator()(T value) -> iterator {
 | |
|     return write<Char>(out, value);
 | |
|   }
 | |
|   auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
 | |
|     basic_format_parse_context<Char> parse_ctx({});
 | |
|     context format_ctx(out, args, loc);
 | |
|     h.format(parse_ctx, format_ctx);
 | |
|     return format_ctx.out();
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Char> struct arg_formatter {
 | |
|   using iterator = buffer_appender<Char>;
 | |
|   using context = buffer_context<Char>;
 | |
| 
 | |
|   iterator out;
 | |
|   const format_specs<Char>& specs;
 | |
|   locale_ref locale;
 | |
| 
 | |
|   template <typename T>
 | |
|   FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
 | |
|     return detail::write(out, value, specs, locale);
 | |
|   }
 | |
|   auto operator()(typename basic_format_arg<context>::handle) -> iterator {
 | |
|     // User-defined types are handled separately because they require access
 | |
|     // to the parse context.
 | |
|     return out;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct width_checker {
 | |
|   template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
 | |
|   FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
 | |
|     if (is_negative(value)) throw_format_error("negative width");
 | |
|     return static_cast<unsigned long long>(value);
 | |
|   }
 | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
 | |
|   FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
 | |
|     throw_format_error("width is not integer");
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct precision_checker {
 | |
|   template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
 | |
|   FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
 | |
|     if (is_negative(value)) throw_format_error("negative precision");
 | |
|     return static_cast<unsigned long long>(value);
 | |
|   }
 | |
| 
 | |
|   template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
 | |
|   FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
 | |
|     throw_format_error("precision is not integer");
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename Handler, typename FormatArg>
 | |
| FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg) -> int {
 | |
|   unsigned long long value = visit_format_arg(Handler(), arg);
 | |
|   if (value > to_unsigned(max_value<int>()))
 | |
|     throw_format_error("number is too big");
 | |
|   return static_cast<int>(value);
 | |
| }
 | |
| 
 | |
| template <typename Context, typename ID>
 | |
| FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> decltype(ctx.arg(id)) {
 | |
|   auto arg = ctx.arg(id);
 | |
|   if (!arg) ctx.on_error("argument not found");
 | |
|   return arg;
 | |
| }
 | |
| 
 | |
| template <typename Handler, typename Context>
 | |
| FMT_CONSTEXPR void handle_dynamic_spec(int& value,
 | |
|                                        arg_ref<typename Context::char_type> ref,
 | |
|                                        Context& ctx) {
 | |
|   switch (ref.kind) {
 | |
|   case arg_id_kind::none:
 | |
|     break;
 | |
|   case arg_id_kind::index:
 | |
|     value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index));
 | |
|     break;
 | |
|   case arg_id_kind::name:
 | |
|     value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if FMT_USE_USER_DEFINED_LITERALS
 | |
| #  if FMT_USE_NONTYPE_TEMPLATE_ARGS
 | |
| template <typename T, typename Char, size_t N,
 | |
|           fmt::detail_exported::fixed_string<Char, N> Str>
 | |
| struct statically_named_arg : view {
 | |
|   static constexpr auto name = Str.data;
 | |
| 
 | |
|   const T& value;
 | |
|   statically_named_arg(const T& v) : value(v) {}
 | |
| };
 | |
| 
 | |
| template <typename T, typename Char, size_t N,
 | |
|           fmt::detail_exported::fixed_string<Char, N> Str>
 | |
| struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};
 | |
| 
 | |
| template <typename T, typename Char, size_t N,
 | |
|           fmt::detail_exported::fixed_string<Char, N> Str>
 | |
| struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
 | |
|     : std::true_type {};
 | |
| 
 | |
| template <typename Char, size_t N,
 | |
|           fmt::detail_exported::fixed_string<Char, N> Str>
 | |
| struct udl_arg {
 | |
|   template <typename T> auto operator=(T&& value) const {
 | |
|     return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
 | |
|   }
 | |
| };
 | |
| #  else
 | |
| template <typename Char> struct udl_arg {
 | |
|   const Char* str;
 | |
| 
 | |
|   template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
 | |
|     return {str, std::forward<T>(value)};
 | |
|   }
 | |
| };
 | |
| #  endif
 | |
| #endif  // FMT_USE_USER_DEFINED_LITERALS
 | |
| 
 | |
| template <typename Locale, typename Char>
 | |
| auto vformat(const Locale& loc, basic_string_view<Char> fmt,
 | |
|              basic_format_args<buffer_context<type_identity_t<Char>>> args)
 | |
|     -> std::basic_string<Char> {
 | |
|   auto buf = basic_memory_buffer<Char>();
 | |
|   detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
 | |
|   return {buf.data(), buf.size()};
 | |
| }
 | |
| 
 | |
| using format_func = void (*)(detail::buffer<char>&, int, const char*);
 | |
| 
 | |
| FMT_API void format_error_code(buffer<char>& out, int error_code,
 | |
|                                string_view message) noexcept;
 | |
| 
 | |
| FMT_API void report_error(format_func func, int error_code,
 | |
|                           const char* message) noexcept;
 | |
| }  // namespace detail
 | |
| 
 | |
| FMT_API auto vsystem_error(int error_code, string_view format_str,
 | |
|                            format_args args) -> std::system_error;
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   Constructs :class:`std::system_error` with a message formatted with
 | |
|   ``fmt::format(fmt, args...)``.
 | |
|   *error_code* is a system error code as given by ``errno``.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|     // This throws std::system_error with the description
 | |
|     //   cannot open file 'madeup': No such file or directory
 | |
|     // or similar (system message may vary).
 | |
|     const char* filename = "madeup";
 | |
|     std::FILE* file = std::fopen(filename, "r");
 | |
|     if (!file)
 | |
|       throw fmt::system_error(errno, "cannot open file '{}'", filename);
 | |
|   \endrst
 | |
|  */
 | |
| template <typename... T>
 | |
| auto system_error(int error_code, format_string<T...> fmt, T&&... args)
 | |
|     -> std::system_error {
 | |
|   return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
 | |
| }
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   Formats an error message for an error returned by an operating system or a
 | |
|   language runtime, for example a file opening error, and writes it to *out*.
 | |
|   The format is the same as the one used by ``std::system_error(ec, message)``
 | |
|   where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
 | |
|   It is implementation-defined but normally looks like:
 | |
| 
 | |
|   .. parsed-literal::
 | |
|      *<message>*: *<system-message>*
 | |
| 
 | |
|   where *<message>* is the passed message and *<system-message>* is the system
 | |
|   message corresponding to the error code.
 | |
|   *error_code* is a system error code as given by ``errno``.
 | |
|   \endrst
 | |
|  */
 | |
| FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
 | |
|                                  const char* message) noexcept;
 | |
| 
 | |
| // Reports a system error without throwing an exception.
 | |
| // Can be used to report errors from destructors.
 | |
| FMT_API void report_system_error(int error_code, const char* message) noexcept;
 | |
| 
 | |
| /** Fast integer formatter. */
 | |
| class format_int {
 | |
|  private:
 | |
|   // Buffer should be large enough to hold all digits (digits10 + 1),
 | |
|   // a sign and a null character.
 | |
|   enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
 | |
|   mutable char buffer_[buffer_size];
 | |
|   char* str_;
 | |
| 
 | |
|   template <typename UInt> auto format_unsigned(UInt value) -> char* {
 | |
|     auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
 | |
|     return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
 | |
|   }
 | |
| 
 | |
|   template <typename Int> auto format_signed(Int value) -> char* {
 | |
|     auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
 | |
|     bool negative = value < 0;
 | |
|     if (negative) abs_value = 0 - abs_value;
 | |
|     auto begin = format_unsigned(abs_value);
 | |
|     if (negative) *--begin = '-';
 | |
|     return begin;
 | |
|   }
 | |
| 
 | |
|  public:
 | |
|   explicit format_int(int value) : str_(format_signed(value)) {}
 | |
|   explicit format_int(long value) : str_(format_signed(value)) {}
 | |
|   explicit format_int(long long value) : str_(format_signed(value)) {}
 | |
|   explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
 | |
|   explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
 | |
|   explicit format_int(unsigned long long value)
 | |
|       : str_(format_unsigned(value)) {}
 | |
| 
 | |
|   /** Returns the number of characters written to the output buffer. */
 | |
|   auto size() const -> size_t {
 | |
|     return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|     Returns a pointer to the output buffer content. No terminating null
 | |
|     character is appended.
 | |
|    */
 | |
|   auto data() const -> const char* { return str_; }
 | |
| 
 | |
|   /**
 | |
|     Returns a pointer to the output buffer content with terminating null
 | |
|     character appended.
 | |
|    */
 | |
|   auto c_str() const -> const char* {
 | |
|     buffer_[buffer_size - 1] = '\0';
 | |
|     return str_;
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|     \rst
 | |
|     Returns the content of the output buffer as an ``std::string``.
 | |
|     \endrst
 | |
|    */
 | |
|   auto str() const -> std::string { return std::string(str_, size()); }
 | |
| };
 | |
| 
 | |
| template <typename T, typename Char>
 | |
| struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>>
 | |
|     : formatter<detail::format_as_t<T>, Char> {
 | |
|   template <typename FormatContext>
 | |
|   auto format(const T& value, FormatContext& ctx) const -> decltype(ctx.out()) {
 | |
|     using base = formatter<detail::format_as_t<T>, Char>;
 | |
|     return base::format(format_as(value), ctx);
 | |
|   }
 | |
| };
 | |
| 
 | |
| #define FMT_FORMAT_AS(Type, Base) \
 | |
|   template <typename Char>        \
 | |
|   struct formatter<Type, Char> : formatter<Base, Char> {}
 | |
| 
 | |
| FMT_FORMAT_AS(signed char, int);
 | |
| FMT_FORMAT_AS(unsigned char, unsigned);
 | |
| FMT_FORMAT_AS(short, int);
 | |
| FMT_FORMAT_AS(unsigned short, unsigned);
 | |
| FMT_FORMAT_AS(long, detail::long_type);
 | |
| FMT_FORMAT_AS(unsigned long, detail::ulong_type);
 | |
| FMT_FORMAT_AS(Char*, const Char*);
 | |
| FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
 | |
| FMT_FORMAT_AS(std::nullptr_t, const void*);
 | |
| FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
 | |
| FMT_FORMAT_AS(void*, const void*);
 | |
| 
 | |
| template <typename Char, size_t N>
 | |
| struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {};
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   Converts ``p`` to ``const void*`` for pointer formatting.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|     auto s = fmt::format("{}", fmt::ptr(p));
 | |
|   \endrst
 | |
|  */
 | |
| template <typename T> auto ptr(T p) -> const void* {
 | |
|   static_assert(std::is_pointer<T>::value, "");
 | |
|   return detail::bit_cast<const void*>(p);
 | |
| }
 | |
| template <typename T, typename Deleter>
 | |
| auto ptr(const std::unique_ptr<T, Deleter>& p) -> const void* {
 | |
|   return p.get();
 | |
| }
 | |
| template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
 | |
|   return p.get();
 | |
| }
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   Converts ``e`` to the underlying type.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|     enum class color { red, green, blue };
 | |
|     auto s = fmt::format("{}", fmt::underlying(color::red));
 | |
|   \endrst
 | |
|  */
 | |
| template <typename Enum>
 | |
| constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> {
 | |
|   return static_cast<underlying_t<Enum>>(e);
 | |
| }
 | |
| 
 | |
| namespace enums {
 | |
| template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)>
 | |
| constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> {
 | |
|   return static_cast<underlying_t<Enum>>(e);
 | |
| }
 | |
| }  // namespace enums
 | |
| 
 | |
| class bytes {
 | |
|  private:
 | |
|   string_view data_;
 | |
|   friend struct formatter<bytes>;
 | |
| 
 | |
|  public:
 | |
|   explicit bytes(string_view data) : data_(data) {}
 | |
| };
 | |
| 
 | |
| template <> struct formatter<bytes> {
 | |
|  private:
 | |
|   detail::dynamic_format_specs<> specs_;
 | |
| 
 | |
|  public:
 | |
|   template <typename ParseContext>
 | |
|   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
 | |
|     return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
 | |
|                               detail::type::string_type);
 | |
|   }
 | |
| 
 | |
|   template <typename FormatContext>
 | |
|   auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
 | |
|     detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
 | |
|                                                        specs_.width_ref, ctx);
 | |
|     detail::handle_dynamic_spec<detail::precision_checker>(
 | |
|         specs_.precision, specs_.precision_ref, ctx);
 | |
|     return detail::write_bytes(ctx.out(), b.data_, specs_);
 | |
|   }
 | |
| };
 | |
| 
 | |
| // group_digits_view is not derived from view because it copies the argument.
 | |
| template <typename T> struct group_digits_view {
 | |
|   T value;
 | |
| };
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   Returns a view that formats an integer value using ',' as a locale-independent
 | |
|   thousands separator.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|     fmt::print("{}", fmt::group_digits(12345));
 | |
|     // Output: "12,345"
 | |
|   \endrst
 | |
|  */
 | |
| template <typename T> auto group_digits(T value) -> group_digits_view<T> {
 | |
|   return {value};
 | |
| }
 | |
| 
 | |
| template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
 | |
|  private:
 | |
|   detail::dynamic_format_specs<> specs_;
 | |
| 
 | |
|  public:
 | |
|   template <typename ParseContext>
 | |
|   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
 | |
|     return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
 | |
|                               detail::type::int_type);
 | |
|   }
 | |
| 
 | |
|   template <typename FormatContext>
 | |
|   auto format(group_digits_view<T> t, FormatContext& ctx)
 | |
|       -> decltype(ctx.out()) {
 | |
|     detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
 | |
|                                                        specs_.width_ref, ctx);
 | |
|     detail::handle_dynamic_spec<detail::precision_checker>(
 | |
|         specs_.precision, specs_.precision_ref, ctx);
 | |
|     return detail::write_int(
 | |
|         ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_,
 | |
|         detail::digit_grouping<char>("\3", ","));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T> struct nested_view {
 | |
|   const formatter<T>* fmt;
 | |
|   const T* value;
 | |
| };
 | |
| 
 | |
| template <typename T> struct formatter<nested_view<T>> {
 | |
|   FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* {
 | |
|     return ctx.begin();
 | |
|   }
 | |
|   auto format(nested_view<T> view, format_context& ctx) const
 | |
|       -> decltype(ctx.out()) {
 | |
|     return view.fmt->format(*view.value, ctx);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T> struct nested_formatter {
 | |
|  private:
 | |
|   int width_;
 | |
|   detail::fill_t<char> fill_;
 | |
|   align_t align_ : 4;
 | |
|   formatter<T> formatter_;
 | |
| 
 | |
|  public:
 | |
|   constexpr nested_formatter() : width_(0), align_(align_t::none) {}
 | |
| 
 | |
|   FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* {
 | |
|     auto specs = detail::dynamic_format_specs<char>();
 | |
|     auto it = parse_format_specs(ctx.begin(), ctx.end(), specs, ctx,
 | |
|                                  detail::type::none_type);
 | |
|     width_ = specs.width;
 | |
|     fill_ = specs.fill;
 | |
|     align_ = specs.align;
 | |
|     ctx.advance_to(it);
 | |
|     return formatter_.parse(ctx);
 | |
|   }
 | |
| 
 | |
|   template <typename F>
 | |
|   auto write_padded(format_context& ctx, F write) const -> decltype(ctx.out()) {
 | |
|     if (width_ == 0) return write(ctx.out());
 | |
|     auto buf = memory_buffer();
 | |
|     write(std::back_inserter(buf));
 | |
|     auto specs = format_specs<>();
 | |
|     specs.width = width_;
 | |
|     specs.fill = fill_;
 | |
|     specs.align = align_;
 | |
|     return detail::write(ctx.out(), string_view(buf.data(), buf.size()), specs);
 | |
|   }
 | |
| 
 | |
|   auto nested(const T& value) const -> nested_view<T> {
 | |
|     return nested_view<T>{&formatter_, &value};
 | |
|   }
 | |
| };
 | |
| 
 | |
| // DEPRECATED! join_view will be moved to ranges.h.
 | |
| template <typename It, typename Sentinel, typename Char = char>
 | |
| struct join_view : detail::view {
 | |
|   It begin;
 | |
|   Sentinel end;
 | |
|   basic_string_view<Char> sep;
 | |
| 
 | |
|   join_view(It b, Sentinel e, basic_string_view<Char> s)
 | |
|       : begin(b), end(e), sep(s) {}
 | |
| };
 | |
| 
 | |
| template <typename It, typename Sentinel, typename Char>
 | |
| struct formatter<join_view<It, Sentinel, Char>, Char> {
 | |
|  private:
 | |
|   using value_type =
 | |
| #ifdef __cpp_lib_ranges
 | |
|       std::iter_value_t<It>;
 | |
| #else
 | |
|       typename std::iterator_traits<It>::value_type;
 | |
| #endif
 | |
|   formatter<remove_cvref_t<value_type>, Char> value_formatter_;
 | |
| 
 | |
|  public:
 | |
|   template <typename ParseContext>
 | |
|   FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* {
 | |
|     return value_formatter_.parse(ctx);
 | |
|   }
 | |
| 
 | |
|   template <typename FormatContext>
 | |
|   auto format(const join_view<It, Sentinel, Char>& value,
 | |
|               FormatContext& ctx) const -> decltype(ctx.out()) {
 | |
|     auto it = value.begin;
 | |
|     auto out = ctx.out();
 | |
|     if (it != value.end) {
 | |
|       out = value_formatter_.format(*it, ctx);
 | |
|       ++it;
 | |
|       while (it != value.end) {
 | |
|         out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
 | |
|         ctx.advance_to(out);
 | |
|         out = value_formatter_.format(*it, ctx);
 | |
|         ++it;
 | |
|       }
 | |
|     }
 | |
|     return out;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|   Returns a view that formats the iterator range `[begin, end)` with elements
 | |
|   separated by `sep`.
 | |
|  */
 | |
| template <typename It, typename Sentinel>
 | |
| auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
 | |
|   return {begin, end, sep};
 | |
| }
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   Returns a view that formats `range` with elements separated by `sep`.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|     std::vector<int> v = {1, 2, 3};
 | |
|     fmt::print("{}", fmt::join(v, ", "));
 | |
|     // Output: "1, 2, 3"
 | |
| 
 | |
|   ``fmt::join`` applies passed format specifiers to the range elements::
 | |
| 
 | |
|     fmt::print("{:02}", fmt::join(v, ", "));
 | |
|     // Output: "01, 02, 03"
 | |
|   \endrst
 | |
|  */
 | |
| template <typename Range>
 | |
| auto join(Range&& range, string_view sep)
 | |
|     -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
 | |
|   return join(std::begin(range), std::end(range), sep);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   \rst
 | |
|   Converts *value* to ``std::string`` using the default format for type *T*.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|     #include <fmt/format.h>
 | |
| 
 | |
|     std::string answer = fmt::to_string(42);
 | |
|   \endrst
 | |
|  */
 | |
| template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
 | |
|                                     !detail::has_format_as<T>::value)>
 | |
| inline auto to_string(const T& value) -> std::string {
 | |
|   auto buffer = memory_buffer();
 | |
|   detail::write<char>(appender(buffer), value);
 | |
|   return {buffer.data(), buffer.size()};
 | |
| }
 | |
| 
 | |
| template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
 | |
| FMT_NODISCARD inline auto to_string(T value) -> std::string {
 | |
|   // The buffer should be large enough to store the number including the sign
 | |
|   // or "false" for bool.
 | |
|   constexpr int max_size = detail::digits10<T>() + 2;
 | |
|   char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
 | |
|   char* begin = buffer;
 | |
|   return std::string(begin, detail::write<char>(begin, value));
 | |
| }
 | |
| 
 | |
| template <typename Char, size_t SIZE>
 | |
| FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
 | |
|     -> std::basic_string<Char> {
 | |
|   auto size = buf.size();
 | |
|   detail::assume(size < std::basic_string<Char>().max_size());
 | |
|   return std::basic_string<Char>(buf.data(), size);
 | |
| }
 | |
| 
 | |
| template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
 | |
|                                     detail::has_format_as<T>::value)>
 | |
| inline auto to_string(const T& value) -> std::string {
 | |
|   return to_string(format_as(value));
 | |
| }
 | |
| 
 | |
| FMT_END_EXPORT
 | |
| 
 | |
| namespace detail {
 | |
| 
 | |
| template <typename Char>
 | |
| void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
 | |
|                 typename vformat_args<Char>::type args, locale_ref loc) {
 | |
|   auto out = buffer_appender<Char>(buf);
 | |
|   if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
 | |
|     auto arg = args.get(0);
 | |
|     if (!arg) throw_format_error("argument not found");
 | |
|     visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   struct format_handler : error_handler {
 | |
|     basic_format_parse_context<Char> parse_context;
 | |
|     buffer_context<Char> context;
 | |
| 
 | |
|     format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str,
 | |
|                    basic_format_args<buffer_context<Char>> p_args,
 | |
|                    locale_ref p_loc)
 | |
|         : parse_context(str), context(p_out, p_args, p_loc) {}
 | |
| 
 | |
|     void on_text(const Char* begin, const Char* end) {
 | |
|       auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
 | |
|       context.advance_to(write<Char>(context.out(), text));
 | |
|     }
 | |
| 
 | |
|     FMT_CONSTEXPR auto on_arg_id() -> int {
 | |
|       return parse_context.next_arg_id();
 | |
|     }
 | |
|     FMT_CONSTEXPR auto on_arg_id(int id) -> int {
 | |
|       return parse_context.check_arg_id(id), id;
 | |
|     }
 | |
|     FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
 | |
|       int arg_id = context.arg_id(id);
 | |
|       if (arg_id < 0) throw_format_error("argument not found");
 | |
|       return arg_id;
 | |
|     }
 | |
| 
 | |
|     FMT_INLINE void on_replacement_field(int id, const Char*) {
 | |
|       auto arg = get_arg(context, id);
 | |
|       context.advance_to(visit_format_arg(
 | |
|           default_arg_formatter<Char>{context.out(), context.args(),
 | |
|                                       context.locale()},
 | |
|           arg));
 | |
|     }
 | |
| 
 | |
|     auto on_format_specs(int id, const Char* begin, const Char* end)
 | |
|         -> const Char* {
 | |
|       auto arg = get_arg(context, id);
 | |
|       // Not using a visitor for custom types gives better codegen.
 | |
|       if (arg.format_custom(begin, parse_context, context))
 | |
|         return parse_context.begin();
 | |
|       auto specs = detail::dynamic_format_specs<Char>();
 | |
|       begin = parse_format_specs(begin, end, specs, parse_context, arg.type());
 | |
|       detail::handle_dynamic_spec<detail::width_checker>(
 | |
|           specs.width, specs.width_ref, context);
 | |
|       detail::handle_dynamic_spec<detail::precision_checker>(
 | |
|           specs.precision, specs.precision_ref, context);
 | |
|       if (begin == end || *begin != '}')
 | |
|         throw_format_error("missing '}' in format string");
 | |
|       auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
 | |
|       context.advance_to(visit_format_arg(f, arg));
 | |
|       return begin;
 | |
|     }
 | |
|   };
 | |
|   detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
 | |
| }
 | |
| 
 | |
| FMT_BEGIN_EXPORT
 | |
| 
 | |
| #ifndef FMT_HEADER_ONLY
 | |
| extern template FMT_API void vformat_to(buffer<char>&, string_view,
 | |
|                                         typename vformat_args<>::type,
 | |
|                                         locale_ref);
 | |
| extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
 | |
|     -> thousands_sep_result<char>;
 | |
| extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
 | |
|     -> thousands_sep_result<wchar_t>;
 | |
| extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
 | |
| extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
 | |
| #endif  // FMT_HEADER_ONLY
 | |
| 
 | |
| }  // namespace detail
 | |
| 
 | |
| #if FMT_USE_USER_DEFINED_LITERALS
 | |
| inline namespace literals {
 | |
| /**
 | |
|   \rst
 | |
|   User-defined literal equivalent of :func:`fmt::arg`.
 | |
| 
 | |
|   **Example**::
 | |
| 
 | |
|     using namespace fmt::literals;
 | |
|     fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
 | |
|   \endrst
 | |
|  */
 | |
| #  if FMT_USE_NONTYPE_TEMPLATE_ARGS
 | |
| template <detail_exported::fixed_string Str> constexpr auto operator""_a() {
 | |
|   using char_t = remove_cvref_t<decltype(Str.data[0])>;
 | |
|   return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>();
 | |
| }
 | |
| #  else
 | |
| constexpr auto operator""_a(const char* s, size_t) -> detail::udl_arg<char> {
 | |
|   return {s};
 | |
| }
 | |
| #  endif
 | |
| }  // namespace literals
 | |
| #endif  // FMT_USE_USER_DEFINED_LITERALS
 | |
| 
 | |
| template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
 | |
| inline auto vformat(const Locale& loc, string_view fmt, format_args args)
 | |
|     -> std::string {
 | |
|   return detail::vformat(loc, fmt, args);
 | |
| }
 | |
| 
 | |
| template <typename Locale, typename... T,
 | |
|           FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
 | |
| inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
 | |
|     -> std::string {
 | |
|   return fmt::vformat(loc, string_view(fmt), fmt::make_format_args(args...));
 | |
| }
 | |
| 
 | |
| template <typename OutputIt, typename Locale,
 | |
|           FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
 | |
|                             detail::is_locale<Locale>::value)>
 | |
| auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
 | |
|                 format_args args) -> OutputIt {
 | |
|   using detail::get_buffer;
 | |
|   auto&& buf = get_buffer<char>(out);
 | |
|   detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
 | |
|   return detail::get_iterator(buf, out);
 | |
| }
 | |
| 
 | |
| template <typename OutputIt, typename Locale, typename... T,
 | |
|           FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
 | |
|                             detail::is_locale<Locale>::value)>
 | |
| FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
 | |
|                           format_string<T...> fmt, T&&... args) -> OutputIt {
 | |
|   return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
 | |
| }
 | |
| 
 | |
| template <typename Locale, typename... T,
 | |
|           FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
 | |
| FMT_NODISCARD FMT_INLINE auto formatted_size(const Locale& loc,
 | |
|                                              format_string<T...> fmt,
 | |
|                                              T&&... args) -> size_t {
 | |
|   auto buf = detail::counting_buffer<>();
 | |
|   detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...),
 | |
|                            detail::locale_ref(loc));
 | |
|   return buf.count();
 | |
| }
 | |
| 
 | |
| FMT_END_EXPORT
 | |
| 
 | |
| template <typename T, typename Char>
 | |
| template <typename FormatContext>
 | |
| FMT_CONSTEXPR FMT_INLINE auto
 | |
| formatter<T, Char,
 | |
|           enable_if_t<detail::type_constant<T, Char>::value !=
 | |
|                       detail::type::custom_type>>::format(const T& val,
 | |
|                                                           FormatContext& ctx)
 | |
|     const -> decltype(ctx.out()) {
 | |
|   if (specs_.width_ref.kind == detail::arg_id_kind::none &&
 | |
|       specs_.precision_ref.kind == detail::arg_id_kind::none) {
 | |
|     return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
 | |
|   }
 | |
|   auto specs = specs_;
 | |
|   detail::handle_dynamic_spec<detail::width_checker>(specs.width,
 | |
|                                                      specs.width_ref, ctx);
 | |
|   detail::handle_dynamic_spec<detail::precision_checker>(
 | |
|       specs.precision, specs.precision_ref, ctx);
 | |
|   return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
 | |
| }
 | |
| 
 | |
| FMT_END_NAMESPACE
 | |
| 
 | |
| #ifdef FMT_HEADER_ONLY
 | |
| #  define FMT_FUNC inline
 | |
| #  include "format-inl.h"
 | |
| #else
 | |
| #  define FMT_FUNC
 | |
| #endif
 | |
| 
 | |
| #endif  // FMT_FORMAT_H_
 |