469 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			469 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "Box2D/Collision/Shapes/b2PolygonShape.h"
 | ||
|  | #include <new>
 | ||
|  | 
 | ||
|  | b2Shape* b2PolygonShape::Clone(b2BlockAllocator* allocator) const | ||
|  | { | ||
|  | 	void* mem = allocator->Allocate(sizeof(b2PolygonShape)); | ||
|  | 	b2PolygonShape* clone = new (mem) b2PolygonShape; | ||
|  | 	*clone = *this; | ||
|  | 	return clone; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PolygonShape::SetAsBox(float32 hx, float32 hy) | ||
|  | { | ||
|  | 	m_count = 4; | ||
|  | 	m_vertices[0].Set(-hx, -hy); | ||
|  | 	m_vertices[1].Set( hx, -hy); | ||
|  | 	m_vertices[2].Set( hx,  hy); | ||
|  | 	m_vertices[3].Set(-hx,  hy); | ||
|  | 	m_normals[0].Set(0.0f, -1.0f); | ||
|  | 	m_normals[1].Set(1.0f, 0.0f); | ||
|  | 	m_normals[2].Set(0.0f, 1.0f); | ||
|  | 	m_normals[3].Set(-1.0f, 0.0f); | ||
|  | 	m_centroid.SetZero(); | ||
|  | } | ||
|  | 
 | ||
|  | void b2PolygonShape::SetAsBox(float32 hx, float32 hy, const b2Vec2& center, float32 angle) | ||
|  | { | ||
|  | 	m_count = 4; | ||
|  | 	m_vertices[0].Set(-hx, -hy); | ||
|  | 	m_vertices[1].Set( hx, -hy); | ||
|  | 	m_vertices[2].Set( hx,  hy); | ||
|  | 	m_vertices[3].Set(-hx,  hy); | ||
|  | 	m_normals[0].Set(0.0f, -1.0f); | ||
|  | 	m_normals[1].Set(1.0f, 0.0f); | ||
|  | 	m_normals[2].Set(0.0f, 1.0f); | ||
|  | 	m_normals[3].Set(-1.0f, 0.0f); | ||
|  | 	m_centroid = center; | ||
|  | 
 | ||
|  | 	b2Transform xf; | ||
|  | 	xf.p = center; | ||
|  | 	xf.q.Set(angle); | ||
|  | 
 | ||
|  | 	// Transform vertices and normals.
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		m_vertices[i] = b2Mul(xf, m_vertices[i]); | ||
|  | 		m_normals[i] = b2Mul(xf.q, m_normals[i]); | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | int32 b2PolygonShape::GetChildCount() const | ||
|  | { | ||
|  | 	return 1; | ||
|  | } | ||
|  | 
 | ||
|  | static b2Vec2 ComputeCentroid(const b2Vec2* vs, int32 count) | ||
|  | { | ||
|  | 	b2Assert(count >= 3); | ||
|  | 
 | ||
|  | 	b2Vec2 c; c.Set(0.0f, 0.0f); | ||
|  | 	float32 area = 0.0f; | ||
|  | 
 | ||
|  | 	// pRef is the reference point for forming triangles.
 | ||
|  | 	// It's location doesn't change the result (except for rounding error).
 | ||
|  | 	b2Vec2 pRef(0.0f, 0.0f); | ||
|  | #if 0
 | ||
|  | 	// This code would put the reference point inside the polygon.
 | ||
|  | 	for (int32 i = 0; i < count; ++i) | ||
|  | 	{ | ||
|  | 		pRef += vs[i]; | ||
|  | 	} | ||
|  | 	pRef *= 1.0f / count; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 	const float32 inv3 = 1.0f / 3.0f; | ||
|  | 
 | ||
|  | 	for (int32 i = 0; i < count; ++i) | ||
|  | 	{ | ||
|  | 		// Triangle vertices.
 | ||
|  | 		b2Vec2 p1 = pRef; | ||
|  | 		b2Vec2 p2 = vs[i]; | ||
|  | 		b2Vec2 p3 = i + 1 < count ? vs[i+1] : vs[0]; | ||
|  | 
 | ||
|  | 		b2Vec2 e1 = p2 - p1; | ||
|  | 		b2Vec2 e2 = p3 - p1; | ||
|  | 
 | ||
|  | 		float32 D = b2Cross(e1, e2); | ||
|  | 
 | ||
|  | 		float32 triangleArea = 0.5f * D; | ||
|  | 		area += triangleArea; | ||
|  | 
 | ||
|  | 		// Area weighted centroid
 | ||
|  | 		c += triangleArea * inv3 * (p1 + p2 + p3); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Centroid
 | ||
|  | 	b2Assert(area > b2_epsilon); | ||
|  | 	c *= 1.0f / area; | ||
|  | 	return c; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PolygonShape::Set(const b2Vec2* vertices, int32 count) | ||
|  | { | ||
|  | 	b2Assert(3 <= count && count <= b2_maxPolygonVertices); | ||
|  | 	if (count < 3) | ||
|  | 	{ | ||
|  | 		SetAsBox(1.0f, 1.0f); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	int32 n = b2Min(count, b2_maxPolygonVertices); | ||
|  | 
 | ||
|  | 	// Perform welding and copy vertices into local buffer.
 | ||
|  | 	b2Vec2 ps[b2_maxPolygonVertices]; | ||
|  | 	int32 tempCount = 0; | ||
|  | 	for (int32 i = 0; i < n; ++i) | ||
|  | 	{ | ||
|  | 		b2Vec2 v = vertices[i]; | ||
|  | 
 | ||
|  | 		bool unique = true; | ||
|  | 		for (int32 j = 0; j < tempCount; ++j) | ||
|  | 		{ | ||
|  | 			if (b2DistanceSquared(v, ps[j]) < ((0.5f * b2_linearSlop) * (0.5f * b2_linearSlop))) | ||
|  | 			{ | ||
|  | 				unique = false; | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (unique) | ||
|  | 		{ | ||
|  | 			ps[tempCount++] = v; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	n = tempCount; | ||
|  | 	if (n < 3) | ||
|  | 	{ | ||
|  | 		// Polygon is degenerate.
 | ||
|  | 		b2Assert(false); | ||
|  | 		SetAsBox(1.0f, 1.0f); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Create the convex hull using the Gift wrapping algorithm
 | ||
|  | 	// http://en.wikipedia.org/wiki/Gift_wrapping_algorithm
 | ||
|  | 
 | ||
|  | 	// Find the right most point on the hull
 | ||
|  | 	int32 i0 = 0; | ||
|  | 	float32 x0 = ps[0].x; | ||
|  | 	for (int32 i = 1; i < n; ++i) | ||
|  | 	{ | ||
|  | 		float32 x = ps[i].x; | ||
|  | 		if (x > x0 || (x == x0 && ps[i].y < ps[i0].y)) | ||
|  | 		{ | ||
|  | 			i0 = i; | ||
|  | 			x0 = x; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int32 hull[b2_maxPolygonVertices]; | ||
|  | 	int32 m = 0; | ||
|  | 	int32 ih = i0; | ||
|  | 
 | ||
|  | 	for (;;) | ||
|  | 	{ | ||
|  | 		b2Assert(m < b2_maxPolygonVertices); | ||
|  | 		hull[m] = ih; | ||
|  | 
 | ||
|  | 		int32 ie = 0; | ||
|  | 		for (int32 j = 1; j < n; ++j) | ||
|  | 		{ | ||
|  | 			if (ie == ih) | ||
|  | 			{ | ||
|  | 				ie = j; | ||
|  | 				continue; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			b2Vec2 r = ps[ie] - ps[hull[m]]; | ||
|  | 			b2Vec2 v = ps[j] - ps[hull[m]]; | ||
|  | 			float32 c = b2Cross(r, v); | ||
|  | 			if (c < 0.0f) | ||
|  | 			{ | ||
|  | 				ie = j; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			// Collinearity check
 | ||
|  | 			if (c == 0.0f && v.LengthSquared() > r.LengthSquared()) | ||
|  | 			{ | ||
|  | 				ie = j; | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		++m; | ||
|  | 		ih = ie; | ||
|  | 
 | ||
|  | 		if (ie == i0) | ||
|  | 		{ | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	 | ||
|  | 	if (m < 3) | ||
|  | 	{ | ||
|  | 		// Polygon is degenerate.
 | ||
|  | 		b2Assert(false); | ||
|  | 		SetAsBox(1.0f, 1.0f); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	m_count = m; | ||
|  | 
 | ||
|  | 	// Copy vertices.
 | ||
|  | 	for (int32 i = 0; i < m; ++i) | ||
|  | 	{ | ||
|  | 		m_vertices[i] = ps[hull[i]]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Compute normals. Ensure the edges have non-zero length.
 | ||
|  | 	for (int32 i = 0; i < m; ++i) | ||
|  | 	{ | ||
|  | 		int32 i1 = i; | ||
|  | 		int32 i2 = i + 1 < m ? i + 1 : 0; | ||
|  | 		b2Vec2 edge = m_vertices[i2] - m_vertices[i1]; | ||
|  | 		b2Assert(edge.LengthSquared() > b2_epsilon * b2_epsilon); | ||
|  | 		m_normals[i] = b2Cross(edge, 1.0f); | ||
|  | 		m_normals[i].Normalize(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Compute the polygon centroid.
 | ||
|  | 	m_centroid = ComputeCentroid(m_vertices, m); | ||
|  | } | ||
|  | 
 | ||
|  | bool b2PolygonShape::TestPoint(const b2Transform& xf, const b2Vec2& p) const | ||
|  | { | ||
|  | 	b2Vec2 pLocal = b2MulT(xf.q, p - xf.p); | ||
|  | 
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		float32 dot = b2Dot(m_normals[i], pLocal - m_vertices[i]); | ||
|  | 		if (dot > 0.0f) | ||
|  | 		{ | ||
|  | 			return false; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | bool b2PolygonShape::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, | ||
|  | 								const b2Transform& xf, int32 childIndex) const | ||
|  | { | ||
|  | 	B2_NOT_USED(childIndex); | ||
|  | 
 | ||
|  | 	// Put the ray into the polygon's frame of reference.
 | ||
|  | 	b2Vec2 p1 = b2MulT(xf.q, input.p1 - xf.p); | ||
|  | 	b2Vec2 p2 = b2MulT(xf.q, input.p2 - xf.p); | ||
|  | 	b2Vec2 d = p2 - p1; | ||
|  | 
 | ||
|  | 	float32 lower = 0.0f, upper = input.maxFraction; | ||
|  | 
 | ||
|  | 	int32 index = -1; | ||
|  | 
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		// p = p1 + a * d
 | ||
|  | 		// dot(normal, p - v) = 0
 | ||
|  | 		// dot(normal, p1 - v) + a * dot(normal, d) = 0
 | ||
|  | 		float32 numerator = b2Dot(m_normals[i], m_vertices[i] - p1); | ||
|  | 		float32 denominator = b2Dot(m_normals[i], d); | ||
|  | 
 | ||
|  | 		if (denominator == 0.0f) | ||
|  | 		{	 | ||
|  | 			if (numerator < 0.0f) | ||
|  | 			{ | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			// Note: we want this predicate without division:
 | ||
|  | 			// lower < numerator / denominator, where denominator < 0
 | ||
|  | 			// Since denominator < 0, we have to flip the inequality:
 | ||
|  | 			// lower < numerator / denominator <==> denominator * lower > numerator.
 | ||
|  | 			if (denominator < 0.0f && numerator < lower * denominator) | ||
|  | 			{ | ||
|  | 				// Increase lower.
 | ||
|  | 				// The segment enters this half-space.
 | ||
|  | 				lower = numerator / denominator; | ||
|  | 				index = i; | ||
|  | 			} | ||
|  | 			else if (denominator > 0.0f && numerator < upper * denominator) | ||
|  | 			{ | ||
|  | 				// Decrease upper.
 | ||
|  | 				// The segment exits this half-space.
 | ||
|  | 				upper = numerator / denominator; | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// The use of epsilon here causes the assert on lower to trip
 | ||
|  | 		// in some cases. Apparently the use of epsilon was to make edge
 | ||
|  | 		// shapes work, but now those are handled separately.
 | ||
|  | 		//if (upper < lower - b2_epsilon)
 | ||
|  | 		if (upper < lower) | ||
|  | 		{ | ||
|  | 			return false; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Assert(0.0f <= lower && lower <= input.maxFraction); | ||
|  | 
 | ||
|  | 	if (index >= 0) | ||
|  | 	{ | ||
|  | 		output->fraction = lower; | ||
|  | 		output->normal = b2Mul(xf.q, m_normals[index]); | ||
|  | 		return true; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return false; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PolygonShape::ComputeAABB(b2AABB* aabb, const b2Transform& xf, int32 childIndex) const | ||
|  | { | ||
|  | 	B2_NOT_USED(childIndex); | ||
|  | 
 | ||
|  | 	b2Vec2 lower = b2Mul(xf, m_vertices[0]); | ||
|  | 	b2Vec2 upper = lower; | ||
|  | 
 | ||
|  | 	for (int32 i = 1; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		b2Vec2 v = b2Mul(xf, m_vertices[i]); | ||
|  | 		lower = b2Min(lower, v); | ||
|  | 		upper = b2Max(upper, v); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Vec2 r(m_radius, m_radius); | ||
|  | 	aabb->lowerBound = lower - r; | ||
|  | 	aabb->upperBound = upper + r; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PolygonShape::ComputeMass(b2MassData* massData, float32 density) const | ||
|  | { | ||
|  | 	// Polygon mass, centroid, and inertia.
 | ||
|  | 	// Let rho be the polygon density in mass per unit area.
 | ||
|  | 	// Then:
 | ||
|  | 	// mass = rho * int(dA)
 | ||
|  | 	// centroid.x = (1/mass) * rho * int(x * dA)
 | ||
|  | 	// centroid.y = (1/mass) * rho * int(y * dA)
 | ||
|  | 	// I = rho * int((x*x + y*y) * dA)
 | ||
|  | 	//
 | ||
|  | 	// We can compute these integrals by summing all the integrals
 | ||
|  | 	// for each triangle of the polygon. To evaluate the integral
 | ||
|  | 	// for a single triangle, we make a change of variables to
 | ||
|  | 	// the (u,v) coordinates of the triangle:
 | ||
|  | 	// x = x0 + e1x * u + e2x * v
 | ||
|  | 	// y = y0 + e1y * u + e2y * v
 | ||
|  | 	// where 0 <= u && 0 <= v && u + v <= 1.
 | ||
|  | 	//
 | ||
|  | 	// We integrate u from [0,1-v] and then v from [0,1].
 | ||
|  | 	// We also need to use the Jacobian of the transformation:
 | ||
|  | 	// D = cross(e1, e2)
 | ||
|  | 	//
 | ||
|  | 	// Simplification: triangle centroid = (1/3) * (p1 + p2 + p3)
 | ||
|  | 	//
 | ||
|  | 	// The rest of the derivation is handled by computer algebra.
 | ||
|  | 
 | ||
|  | 	b2Assert(m_count >= 3); | ||
|  | 
 | ||
|  | 	b2Vec2 center; center.Set(0.0f, 0.0f); | ||
|  | 	float32 area = 0.0f; | ||
|  | 	float32 I = 0.0f; | ||
|  | 
 | ||
|  | 	// s is the reference point for forming triangles.
 | ||
|  | 	// It's location doesn't change the result (except for rounding error).
 | ||
|  | 	b2Vec2 s(0.0f, 0.0f); | ||
|  | 
 | ||
|  | 	// This code would put the reference point inside the polygon.
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		s += m_vertices[i]; | ||
|  | 	} | ||
|  | 	s *= 1.0f / m_count; | ||
|  | 
 | ||
|  | 	const float32 k_inv3 = 1.0f / 3.0f; | ||
|  | 
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		// Triangle vertices.
 | ||
|  | 		b2Vec2 e1 = m_vertices[i] - s; | ||
|  | 		b2Vec2 e2 = i + 1 < m_count ? m_vertices[i+1] - s : m_vertices[0] - s; | ||
|  | 
 | ||
|  | 		float32 D = b2Cross(e1, e2); | ||
|  | 
 | ||
|  | 		float32 triangleArea = 0.5f * D; | ||
|  | 		area += triangleArea; | ||
|  | 
 | ||
|  | 		// Area weighted centroid
 | ||
|  | 		center += triangleArea * k_inv3 * (e1 + e2); | ||
|  | 
 | ||
|  | 		float32 ex1 = e1.x, ey1 = e1.y; | ||
|  | 		float32 ex2 = e2.x, ey2 = e2.y; | ||
|  | 
 | ||
|  | 		float32 intx2 = ex1*ex1 + ex2*ex1 + ex2*ex2; | ||
|  | 		float32 inty2 = ey1*ey1 + ey2*ey1 + ey2*ey2; | ||
|  | 
 | ||
|  | 		I += (0.25f * k_inv3 * D) * (intx2 + inty2); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Total mass
 | ||
|  | 	massData->mass = density * area; | ||
|  | 
 | ||
|  | 	// Center of mass
 | ||
|  | 	b2Assert(area > b2_epsilon); | ||
|  | 	center *= 1.0f / area; | ||
|  | 	massData->center = center + s; | ||
|  | 
 | ||
|  | 	// Inertia tensor relative to the local origin (point s).
 | ||
|  | 	massData->I = density * I; | ||
|  | 	 | ||
|  | 	// Shift to center of mass then to original body origin.
 | ||
|  | 	massData->I += massData->mass * (b2Dot(massData->center, massData->center) - b2Dot(center, center)); | ||
|  | } | ||
|  | 
 | ||
|  | bool b2PolygonShape::Validate() const | ||
|  | { | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		int32 i1 = i; | ||
|  | 		int32 i2 = i < m_count - 1 ? i1 + 1 : 0; | ||
|  | 		b2Vec2 p = m_vertices[i1]; | ||
|  | 		b2Vec2 e = m_vertices[i2] - p; | ||
|  | 
 | ||
|  | 		for (int32 j = 0; j < m_count; ++j) | ||
|  | 		{ | ||
|  | 			if (j == i1 || j == i2) | ||
|  | 			{ | ||
|  | 				continue; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			b2Vec2 v = m_vertices[j] - p; | ||
|  | 			float32 c = b2Cross(e, v); | ||
|  | 			if (c < 0.0f) | ||
|  | 			{ | ||
|  | 				return false; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return true; | ||
|  | } |