839 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			839 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "Box2D/Dynamics/Contacts/b2ContactSolver.h"
 | ||
|  | 
 | ||
|  | #include "Box2D/Dynamics/Contacts/b2Contact.h"
 | ||
|  | #include "Box2D/Dynamics/b2Body.h"
 | ||
|  | #include "Box2D/Dynamics/b2Fixture.h"
 | ||
|  | #include "Box2D/Dynamics/b2World.h"
 | ||
|  | #include "Box2D/Common/b2StackAllocator.h"
 | ||
|  | 
 | ||
|  | // Solver debugging is normally disabled because the block solver sometimes has to deal with a poorly conditioned effective mass matrix.
 | ||
|  | #define B2_DEBUG_SOLVER 0
 | ||
|  | 
 | ||
|  | bool g_blockSolve = true; | ||
|  | 
 | ||
|  | struct b2ContactPositionConstraint | ||
|  | { | ||
|  | 	b2Vec2 localPoints[b2_maxManifoldPoints]; | ||
|  | 	b2Vec2 localNormal; | ||
|  | 	b2Vec2 localPoint; | ||
|  | 	int32 indexA; | ||
|  | 	int32 indexB; | ||
|  | 	float32 invMassA, invMassB; | ||
|  | 	b2Vec2 localCenterA, localCenterB; | ||
|  | 	float32 invIA, invIB; | ||
|  | 	b2Manifold::Type type; | ||
|  | 	float32 radiusA, radiusB; | ||
|  | 	int32 pointCount; | ||
|  | }; | ||
|  | 
 | ||
|  | b2ContactSolver::b2ContactSolver(b2ContactSolverDef* def) | ||
|  | { | ||
|  | 	m_step = def->step; | ||
|  | 	m_allocator = def->allocator; | ||
|  | 	m_count = def->count; | ||
|  | 	m_positionConstraints = (b2ContactPositionConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactPositionConstraint)); | ||
|  | 	m_velocityConstraints = (b2ContactVelocityConstraint*)m_allocator->Allocate(m_count * sizeof(b2ContactVelocityConstraint)); | ||
|  | 	m_positions = def->positions; | ||
|  | 	m_velocities = def->velocities; | ||
|  | 	m_contacts = def->contacts; | ||
|  | 
 | ||
|  | 	// Initialize position independent portions of the constraints.
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		b2Contact* contact = m_contacts[i]; | ||
|  | 
 | ||
|  | 		b2Fixture* fixtureA = contact->m_fixtureA; | ||
|  | 		b2Fixture* fixtureB = contact->m_fixtureB; | ||
|  | 		b2Shape* shapeA = fixtureA->GetShape(); | ||
|  | 		b2Shape* shapeB = fixtureB->GetShape(); | ||
|  | 		float32 radiusA = shapeA->m_radius; | ||
|  | 		float32 radiusB = shapeB->m_radius; | ||
|  | 		b2Body* bodyA = fixtureA->GetBody(); | ||
|  | 		b2Body* bodyB = fixtureB->GetBody(); | ||
|  | 		b2Manifold* manifold = contact->GetManifold(); | ||
|  | 
 | ||
|  | 		int32 pointCount = manifold->pointCount; | ||
|  | 		b2Assert(pointCount > 0); | ||
|  | 
 | ||
|  | 		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | ||
|  | 		vc->friction = contact->m_friction; | ||
|  | 		vc->restitution = contact->m_restitution; | ||
|  | 		vc->tangentSpeed = contact->m_tangentSpeed; | ||
|  | 		vc->indexA = bodyA->m_islandIndex; | ||
|  | 		vc->indexB = bodyB->m_islandIndex; | ||
|  | 		vc->invMassA = bodyA->m_invMass; | ||
|  | 		vc->invMassB = bodyB->m_invMass; | ||
|  | 		vc->invIA = bodyA->m_invI; | ||
|  | 		vc->invIB = bodyB->m_invI; | ||
|  | 		vc->contactIndex = i; | ||
|  | 		vc->pointCount = pointCount; | ||
|  | 		vc->K.SetZero(); | ||
|  | 		vc->normalMass.SetZero(); | ||
|  | 
 | ||
|  | 		b2ContactPositionConstraint* pc = m_positionConstraints + i; | ||
|  | 		pc->indexA = bodyA->m_islandIndex; | ||
|  | 		pc->indexB = bodyB->m_islandIndex; | ||
|  | 		pc->invMassA = bodyA->m_invMass; | ||
|  | 		pc->invMassB = bodyB->m_invMass; | ||
|  | 		pc->localCenterA = bodyA->m_sweep.localCenter; | ||
|  | 		pc->localCenterB = bodyB->m_sweep.localCenter; | ||
|  | 		pc->invIA = bodyA->m_invI; | ||
|  | 		pc->invIB = bodyB->m_invI; | ||
|  | 		pc->localNormal = manifold->localNormal; | ||
|  | 		pc->localPoint = manifold->localPoint; | ||
|  | 		pc->pointCount = pointCount; | ||
|  | 		pc->radiusA = radiusA; | ||
|  | 		pc->radiusB = radiusB; | ||
|  | 		pc->type = manifold->type; | ||
|  | 
 | ||
|  | 		for (int32 j = 0; j < pointCount; ++j) | ||
|  | 		{ | ||
|  | 			b2ManifoldPoint* cp = manifold->points + j; | ||
|  | 			b2VelocityConstraintPoint* vcp = vc->points + j; | ||
|  | 	 | ||
|  | 			if (m_step.warmStarting) | ||
|  | 			{ | ||
|  | 				vcp->normalImpulse = m_step.dtRatio * cp->normalImpulse; | ||
|  | 				vcp->tangentImpulse = m_step.dtRatio * cp->tangentImpulse; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				vcp->normalImpulse = 0.0f; | ||
|  | 				vcp->tangentImpulse = 0.0f; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			vcp->rA.SetZero(); | ||
|  | 			vcp->rB.SetZero(); | ||
|  | 			vcp->normalMass = 0.0f; | ||
|  | 			vcp->tangentMass = 0.0f; | ||
|  | 			vcp->velocityBias = 0.0f; | ||
|  | 
 | ||
|  | 			pc->localPoints[j] = cp->localPoint; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | b2ContactSolver::~b2ContactSolver() | ||
|  | { | ||
|  | 	m_allocator->Free(m_velocityConstraints); | ||
|  | 	m_allocator->Free(m_positionConstraints); | ||
|  | } | ||
|  | 
 | ||
|  | // Initialize position dependent portions of the velocity constraints.
 | ||
|  | void b2ContactSolver::InitializeVelocityConstraints() | ||
|  | { | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | ||
|  | 		b2ContactPositionConstraint* pc = m_positionConstraints + i; | ||
|  | 
 | ||
|  | 		float32 radiusA = pc->radiusA; | ||
|  | 		float32 radiusB = pc->radiusB; | ||
|  | 		b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); | ||
|  | 
 | ||
|  | 		int32 indexA = vc->indexA; | ||
|  | 		int32 indexB = vc->indexB; | ||
|  | 
 | ||
|  | 		float32 mA = vc->invMassA; | ||
|  | 		float32 mB = vc->invMassB; | ||
|  | 		float32 iA = vc->invIA; | ||
|  | 		float32 iB = vc->invIB; | ||
|  | 		b2Vec2 localCenterA = pc->localCenterA; | ||
|  | 		b2Vec2 localCenterB = pc->localCenterB; | ||
|  | 
 | ||
|  | 		b2Vec2 cA = m_positions[indexA].c; | ||
|  | 		float32 aA = m_positions[indexA].a; | ||
|  | 		b2Vec2 vA = m_velocities[indexA].v; | ||
|  | 		float32 wA = m_velocities[indexA].w; | ||
|  | 
 | ||
|  | 		b2Vec2 cB = m_positions[indexB].c; | ||
|  | 		float32 aB = m_positions[indexB].a; | ||
|  | 		b2Vec2 vB = m_velocities[indexB].v; | ||
|  | 		float32 wB = m_velocities[indexB].w; | ||
|  | 
 | ||
|  | 		b2Assert(manifold->pointCount > 0); | ||
|  | 
 | ||
|  | 		b2Transform xfA, xfB; | ||
|  | 		xfA.q.Set(aA); | ||
|  | 		xfB.q.Set(aB); | ||
|  | 		xfA.p = cA - b2Mul(xfA.q, localCenterA); | ||
|  | 		xfB.p = cB - b2Mul(xfB.q, localCenterB); | ||
|  | 
 | ||
|  | 		b2WorldManifold worldManifold; | ||
|  | 		worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); | ||
|  | 
 | ||
|  | 		vc->normal = worldManifold.normal; | ||
|  | 
 | ||
|  | 		int32 pointCount = vc->pointCount; | ||
|  | 		for (int32 j = 0; j < pointCount; ++j) | ||
|  | 		{ | ||
|  | 			b2VelocityConstraintPoint* vcp = vc->points + j; | ||
|  | 
 | ||
|  | 			vcp->rA = worldManifold.points[j] - cA; | ||
|  | 			vcp->rB = worldManifold.points[j] - cB; | ||
|  | 
 | ||
|  | 			float32 rnA = b2Cross(vcp->rA, vc->normal); | ||
|  | 			float32 rnB = b2Cross(vcp->rB, vc->normal); | ||
|  | 
 | ||
|  | 			float32 kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; | ||
|  | 
 | ||
|  | 			vcp->normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f; | ||
|  | 
 | ||
|  | 			b2Vec2 tangent = b2Cross(vc->normal, 1.0f); | ||
|  | 
 | ||
|  | 			float32 rtA = b2Cross(vcp->rA, tangent); | ||
|  | 			float32 rtB = b2Cross(vcp->rB, tangent); | ||
|  | 
 | ||
|  | 			float32 kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; | ||
|  | 
 | ||
|  | 			vcp->tangentMass = kTangent > 0.0f ? 1.0f /  kTangent : 0.0f; | ||
|  | 
 | ||
|  | 			// Setup a velocity bias for restitution.
 | ||
|  | 			vcp->velocityBias = 0.0f; | ||
|  | 			float32 vRel = b2Dot(vc->normal, vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA)); | ||
|  | 			if (vRel < -b2_velocityThreshold) | ||
|  | 			{ | ||
|  | 				vcp->velocityBias = -vc->restitution * vRel; | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// If we have two points, then prepare the block solver.
 | ||
|  | 		if (vc->pointCount == 2 && g_blockSolve) | ||
|  | 		{ | ||
|  | 			b2VelocityConstraintPoint* vcp1 = vc->points + 0; | ||
|  | 			b2VelocityConstraintPoint* vcp2 = vc->points + 1; | ||
|  | 
 | ||
|  | 			float32 rn1A = b2Cross(vcp1->rA, vc->normal); | ||
|  | 			float32 rn1B = b2Cross(vcp1->rB, vc->normal); | ||
|  | 			float32 rn2A = b2Cross(vcp2->rA, vc->normal); | ||
|  | 			float32 rn2B = b2Cross(vcp2->rB, vc->normal); | ||
|  | 
 | ||
|  | 			float32 k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; | ||
|  | 			float32 k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; | ||
|  | 			float32 k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; | ||
|  | 
 | ||
|  | 			// Ensure a reasonable condition number.
 | ||
|  | 			const float32 k_maxConditionNumber = 1000.0f; | ||
|  | 			if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) | ||
|  | 			{ | ||
|  | 				// K is safe to invert.
 | ||
|  | 				vc->K.ex.Set(k11, k12); | ||
|  | 				vc->K.ey.Set(k12, k22); | ||
|  | 				vc->normalMass = vc->K.GetInverse(); | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				// The constraints are redundant, just use one.
 | ||
|  | 				// TODO_ERIN use deepest?
 | ||
|  | 				vc->pointCount = 1; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2ContactSolver::WarmStart() | ||
|  | { | ||
|  | 	// Warm start.
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | ||
|  | 
 | ||
|  | 		int32 indexA = vc->indexA; | ||
|  | 		int32 indexB = vc->indexB; | ||
|  | 		float32 mA = vc->invMassA; | ||
|  | 		float32 iA = vc->invIA; | ||
|  | 		float32 mB = vc->invMassB; | ||
|  | 		float32 iB = vc->invIB; | ||
|  | 		int32 pointCount = vc->pointCount; | ||
|  | 
 | ||
|  | 		b2Vec2 vA = m_velocities[indexA].v; | ||
|  | 		float32 wA = m_velocities[indexA].w; | ||
|  | 		b2Vec2 vB = m_velocities[indexB].v; | ||
|  | 		float32 wB = m_velocities[indexB].w; | ||
|  | 
 | ||
|  | 		b2Vec2 normal = vc->normal; | ||
|  | 		b2Vec2 tangent = b2Cross(normal, 1.0f); | ||
|  | 
 | ||
|  | 		for (int32 j = 0; j < pointCount; ++j) | ||
|  | 		{ | ||
|  | 			b2VelocityConstraintPoint* vcp = vc->points + j; | ||
|  | 			b2Vec2 P = vcp->normalImpulse * normal + vcp->tangentImpulse * tangent; | ||
|  | 			wA -= iA * b2Cross(vcp->rA, P); | ||
|  | 			vA -= mA * P; | ||
|  | 			wB += iB * b2Cross(vcp->rB, P); | ||
|  | 			vB += mB * P; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		m_velocities[indexA].v = vA; | ||
|  | 		m_velocities[indexA].w = wA; | ||
|  | 		m_velocities[indexB].v = vB; | ||
|  | 		m_velocities[indexB].w = wB; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2ContactSolver::SolveVelocityConstraints() | ||
|  | { | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | ||
|  | 
 | ||
|  | 		int32 indexA = vc->indexA; | ||
|  | 		int32 indexB = vc->indexB; | ||
|  | 		float32 mA = vc->invMassA; | ||
|  | 		float32 iA = vc->invIA; | ||
|  | 		float32 mB = vc->invMassB; | ||
|  | 		float32 iB = vc->invIB; | ||
|  | 		int32 pointCount = vc->pointCount; | ||
|  | 
 | ||
|  | 		b2Vec2 vA = m_velocities[indexA].v; | ||
|  | 		float32 wA = m_velocities[indexA].w; | ||
|  | 		b2Vec2 vB = m_velocities[indexB].v; | ||
|  | 		float32 wB = m_velocities[indexB].w; | ||
|  | 
 | ||
|  | 		b2Vec2 normal = vc->normal; | ||
|  | 		b2Vec2 tangent = b2Cross(normal, 1.0f); | ||
|  | 		float32 friction = vc->friction; | ||
|  | 
 | ||
|  | 		b2Assert(pointCount == 1 || pointCount == 2); | ||
|  | 
 | ||
|  | 		// Solve tangent constraints first because non-penetration is more important
 | ||
|  | 		// than friction.
 | ||
|  | 		for (int32 j = 0; j < pointCount; ++j) | ||
|  | 		{ | ||
|  | 			b2VelocityConstraintPoint* vcp = vc->points + j; | ||
|  | 
 | ||
|  | 			// Relative velocity at contact
 | ||
|  | 			b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); | ||
|  | 
 | ||
|  | 			// Compute tangent force
 | ||
|  | 			float32 vt = b2Dot(dv, tangent) - vc->tangentSpeed; | ||
|  | 			float32 lambda = vcp->tangentMass * (-vt); | ||
|  | 
 | ||
|  | 			// b2Clamp the accumulated force
 | ||
|  | 			float32 maxFriction = friction * vcp->normalImpulse; | ||
|  | 			float32 newImpulse = b2Clamp(vcp->tangentImpulse + lambda, -maxFriction, maxFriction); | ||
|  | 			lambda = newImpulse - vcp->tangentImpulse; | ||
|  | 			vcp->tangentImpulse = newImpulse; | ||
|  | 
 | ||
|  | 			// Apply contact impulse
 | ||
|  | 			b2Vec2 P = lambda * tangent; | ||
|  | 
 | ||
|  | 			vA -= mA * P; | ||
|  | 			wA -= iA * b2Cross(vcp->rA, P); | ||
|  | 
 | ||
|  | 			vB += mB * P; | ||
|  | 			wB += iB * b2Cross(vcp->rB, P); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Solve normal constraints
 | ||
|  | 		if (pointCount == 1 || g_blockSolve == false) | ||
|  | 		{ | ||
|  | 			for (int32 j = 0; j < pointCount; ++j) | ||
|  | 			{ | ||
|  | 				b2VelocityConstraintPoint* vcp = vc->points + j; | ||
|  | 
 | ||
|  | 				// Relative velocity at contact
 | ||
|  | 				b2Vec2 dv = vB + b2Cross(wB, vcp->rB) - vA - b2Cross(wA, vcp->rA); | ||
|  | 
 | ||
|  | 				// Compute normal impulse
 | ||
|  | 				float32 vn = b2Dot(dv, normal); | ||
|  | 				float32 lambda = -vcp->normalMass * (vn - vcp->velocityBias); | ||
|  | 
 | ||
|  | 				// b2Clamp the accumulated impulse
 | ||
|  | 				float32 newImpulse = b2Max(vcp->normalImpulse + lambda, 0.0f); | ||
|  | 				lambda = newImpulse - vcp->normalImpulse; | ||
|  | 				vcp->normalImpulse = newImpulse; | ||
|  | 
 | ||
|  | 				// Apply contact impulse
 | ||
|  | 				b2Vec2 P = lambda * normal; | ||
|  | 				vA -= mA * P; | ||
|  | 				wA -= iA * b2Cross(vcp->rA, P); | ||
|  | 
 | ||
|  | 				vB += mB * P; | ||
|  | 				wB += iB * b2Cross(vcp->rB, P); | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			// Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite).
 | ||
|  | 			// Build the mini LCP for this contact patch
 | ||
|  | 			//
 | ||
|  | 			// vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2
 | ||
|  | 			//
 | ||
|  | 			// A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n )
 | ||
|  | 			// b = vn0 - velocityBias
 | ||
|  | 			//
 | ||
|  | 			// The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i
 | ||
|  | 			// implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases
 | ||
|  | 			// vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid
 | ||
|  | 			// solution that satisfies the problem is chosen.
 | ||
|  | 			// 
 | ||
|  | 			// In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires
 | ||
|  | 			// that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i).
 | ||
|  | 			//
 | ||
|  | 			// Substitute:
 | ||
|  | 			// 
 | ||
|  | 			// x = a + d
 | ||
|  | 			// 
 | ||
|  | 			// a := old total impulse
 | ||
|  | 			// x := new total impulse
 | ||
|  | 			// d := incremental impulse 
 | ||
|  | 			//
 | ||
|  | 			// For the current iteration we extend the formula for the incremental impulse
 | ||
|  | 			// to compute the new total impulse:
 | ||
|  | 			//
 | ||
|  | 			// vn = A * d + b
 | ||
|  | 			//    = A * (x - a) + b
 | ||
|  | 			//    = A * x + b - A * a
 | ||
|  | 			//    = A * x + b'
 | ||
|  | 			// b' = b - A * a;
 | ||
|  | 
 | ||
|  | 			b2VelocityConstraintPoint* cp1 = vc->points + 0; | ||
|  | 			b2VelocityConstraintPoint* cp2 = vc->points + 1; | ||
|  | 
 | ||
|  | 			b2Vec2 a(cp1->normalImpulse, cp2->normalImpulse); | ||
|  | 			b2Assert(a.x >= 0.0f && a.y >= 0.0f); | ||
|  | 
 | ||
|  | 			// Relative velocity at contact
 | ||
|  | 			b2Vec2 dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); | ||
|  | 			b2Vec2 dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); | ||
|  | 
 | ||
|  | 			// Compute normal velocity
 | ||
|  | 			float32 vn1 = b2Dot(dv1, normal); | ||
|  | 			float32 vn2 = b2Dot(dv2, normal); | ||
|  | 
 | ||
|  | 			b2Vec2 b; | ||
|  | 			b.x = vn1 - cp1->velocityBias; | ||
|  | 			b.y = vn2 - cp2->velocityBias; | ||
|  | 
 | ||
|  | 			// Compute b'
 | ||
|  | 			b -= b2Mul(vc->K, a); | ||
|  | 
 | ||
|  | 			const float32 k_errorTol = 1e-3f; | ||
|  | 			B2_NOT_USED(k_errorTol); | ||
|  | 
 | ||
|  | 			for (;;) | ||
|  | 			{ | ||
|  | 				//
 | ||
|  | 				// Case 1: vn = 0
 | ||
|  | 				//
 | ||
|  | 				// 0 = A * x + b'
 | ||
|  | 				//
 | ||
|  | 				// Solve for x:
 | ||
|  | 				//
 | ||
|  | 				// x = - inv(A) * b'
 | ||
|  | 				//
 | ||
|  | 				b2Vec2 x = - b2Mul(vc->normalMass, b); | ||
|  | 
 | ||
|  | 				if (x.x >= 0.0f && x.y >= 0.0f) | ||
|  | 				{ | ||
|  | 					// Get the incremental impulse
 | ||
|  | 					b2Vec2 d = x - a; | ||
|  | 
 | ||
|  | 					// Apply incremental impulse
 | ||
|  | 					b2Vec2 P1 = d.x * normal; | ||
|  | 					b2Vec2 P2 = d.y * normal; | ||
|  | 					vA -= mA * (P1 + P2); | ||
|  | 					wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); | ||
|  | 
 | ||
|  | 					vB += mB * (P1 + P2); | ||
|  | 					wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); | ||
|  | 
 | ||
|  | 					// Accumulate
 | ||
|  | 					cp1->normalImpulse = x.x; | ||
|  | 					cp2->normalImpulse = x.y; | ||
|  | 
 | ||
|  | #if B2_DEBUG_SOLVER == 1
 | ||
|  | 					// Postconditions
 | ||
|  | 					dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); | ||
|  | 					dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); | ||
|  | 
 | ||
|  | 					// Compute normal velocity
 | ||
|  | 					vn1 = b2Dot(dv1, normal); | ||
|  | 					vn2 = b2Dot(dv2, normal); | ||
|  | 
 | ||
|  | 					b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); | ||
|  | 					b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); | ||
|  | #endif
 | ||
|  | 					break; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				//
 | ||
|  | 				// Case 2: vn1 = 0 and x2 = 0
 | ||
|  | 				//
 | ||
|  | 				//   0 = a11 * x1 + a12 * 0 + b1' 
 | ||
|  | 				// vn2 = a21 * x1 + a22 * 0 + b2'
 | ||
|  | 				//
 | ||
|  | 				x.x = - cp1->normalMass * b.x; | ||
|  | 				x.y = 0.0f; | ||
|  | 				vn1 = 0.0f; | ||
|  | 				vn2 = vc->K.ex.y * x.x + b.y; | ||
|  | 				if (x.x >= 0.0f && vn2 >= 0.0f) | ||
|  | 				{ | ||
|  | 					// Get the incremental impulse
 | ||
|  | 					b2Vec2 d = x - a; | ||
|  | 
 | ||
|  | 					// Apply incremental impulse
 | ||
|  | 					b2Vec2 P1 = d.x * normal; | ||
|  | 					b2Vec2 P2 = d.y * normal; | ||
|  | 					vA -= mA * (P1 + P2); | ||
|  | 					wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); | ||
|  | 
 | ||
|  | 					vB += mB * (P1 + P2); | ||
|  | 					wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); | ||
|  | 
 | ||
|  | 					// Accumulate
 | ||
|  | 					cp1->normalImpulse = x.x; | ||
|  | 					cp2->normalImpulse = x.y; | ||
|  | 
 | ||
|  | #if B2_DEBUG_SOLVER == 1
 | ||
|  | 					// Postconditions
 | ||
|  | 					dv1 = vB + b2Cross(wB, cp1->rB) - vA - b2Cross(wA, cp1->rA); | ||
|  | 
 | ||
|  | 					// Compute normal velocity
 | ||
|  | 					vn1 = b2Dot(dv1, normal); | ||
|  | 
 | ||
|  | 					b2Assert(b2Abs(vn1 - cp1->velocityBias) < k_errorTol); | ||
|  | #endif
 | ||
|  | 					break; | ||
|  | 				} | ||
|  | 
 | ||
|  | 
 | ||
|  | 				//
 | ||
|  | 				// Case 3: vn2 = 0 and x1 = 0
 | ||
|  | 				//
 | ||
|  | 				// vn1 = a11 * 0 + a12 * x2 + b1' 
 | ||
|  | 				//   0 = a21 * 0 + a22 * x2 + b2'
 | ||
|  | 				//
 | ||
|  | 				x.x = 0.0f; | ||
|  | 				x.y = - cp2->normalMass * b.y; | ||
|  | 				vn1 = vc->K.ey.x * x.y + b.x; | ||
|  | 				vn2 = 0.0f; | ||
|  | 
 | ||
|  | 				if (x.y >= 0.0f && vn1 >= 0.0f) | ||
|  | 				{ | ||
|  | 					// Resubstitute for the incremental impulse
 | ||
|  | 					b2Vec2 d = x - a; | ||
|  | 
 | ||
|  | 					// Apply incremental impulse
 | ||
|  | 					b2Vec2 P1 = d.x * normal; | ||
|  | 					b2Vec2 P2 = d.y * normal; | ||
|  | 					vA -= mA * (P1 + P2); | ||
|  | 					wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); | ||
|  | 
 | ||
|  | 					vB += mB * (P1 + P2); | ||
|  | 					wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); | ||
|  | 
 | ||
|  | 					// Accumulate
 | ||
|  | 					cp1->normalImpulse = x.x; | ||
|  | 					cp2->normalImpulse = x.y; | ||
|  | 
 | ||
|  | #if B2_DEBUG_SOLVER == 1
 | ||
|  | 					// Postconditions
 | ||
|  | 					dv2 = vB + b2Cross(wB, cp2->rB) - vA - b2Cross(wA, cp2->rA); | ||
|  | 
 | ||
|  | 					// Compute normal velocity
 | ||
|  | 					vn2 = b2Dot(dv2, normal); | ||
|  | 
 | ||
|  | 					b2Assert(b2Abs(vn2 - cp2->velocityBias) < k_errorTol); | ||
|  | #endif
 | ||
|  | 					break; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				//
 | ||
|  | 				// Case 4: x1 = 0 and x2 = 0
 | ||
|  | 				// 
 | ||
|  | 				// vn1 = b1
 | ||
|  | 				// vn2 = b2;
 | ||
|  | 				x.x = 0.0f; | ||
|  | 				x.y = 0.0f; | ||
|  | 				vn1 = b.x; | ||
|  | 				vn2 = b.y; | ||
|  | 
 | ||
|  | 				if (vn1 >= 0.0f && vn2 >= 0.0f ) | ||
|  | 				{ | ||
|  | 					// Resubstitute for the incremental impulse
 | ||
|  | 					b2Vec2 d = x - a; | ||
|  | 
 | ||
|  | 					// Apply incremental impulse
 | ||
|  | 					b2Vec2 P1 = d.x * normal; | ||
|  | 					b2Vec2 P2 = d.y * normal; | ||
|  | 					vA -= mA * (P1 + P2); | ||
|  | 					wA -= iA * (b2Cross(cp1->rA, P1) + b2Cross(cp2->rA, P2)); | ||
|  | 
 | ||
|  | 					vB += mB * (P1 + P2); | ||
|  | 					wB += iB * (b2Cross(cp1->rB, P1) + b2Cross(cp2->rB, P2)); | ||
|  | 
 | ||
|  | 					// Accumulate
 | ||
|  | 					cp1->normalImpulse = x.x; | ||
|  | 					cp2->normalImpulse = x.y; | ||
|  | 
 | ||
|  | 					break; | ||
|  | 				} | ||
|  | 
 | ||
|  | 				// No solution, give up. This is hit sometimes, but it doesn't seem to matter.
 | ||
|  | 				break; | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		m_velocities[indexA].v = vA; | ||
|  | 		m_velocities[indexA].w = wA; | ||
|  | 		m_velocities[indexB].v = vB; | ||
|  | 		m_velocities[indexB].w = wB; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2ContactSolver::StoreImpulses() | ||
|  | { | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		b2ContactVelocityConstraint* vc = m_velocityConstraints + i; | ||
|  | 		b2Manifold* manifold = m_contacts[vc->contactIndex]->GetManifold(); | ||
|  | 
 | ||
|  | 		for (int32 j = 0; j < vc->pointCount; ++j) | ||
|  | 		{ | ||
|  | 			manifold->points[j].normalImpulse = vc->points[j].normalImpulse; | ||
|  | 			manifold->points[j].tangentImpulse = vc->points[j].tangentImpulse; | ||
|  | 		} | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | struct b2PositionSolverManifold | ||
|  | { | ||
|  | 	void Initialize(b2ContactPositionConstraint* pc, const b2Transform& xfA, const b2Transform& xfB, int32 index) | ||
|  | 	{ | ||
|  | 		b2Assert(pc->pointCount > 0); | ||
|  | 
 | ||
|  | 		switch (pc->type) | ||
|  | 		{ | ||
|  | 		case b2Manifold::e_circles: | ||
|  | 			{ | ||
|  | 				b2Vec2 pointA = b2Mul(xfA, pc->localPoint); | ||
|  | 				b2Vec2 pointB = b2Mul(xfB, pc->localPoints[0]); | ||
|  | 				normal = pointB - pointA; | ||
|  | 				normal.Normalize(); | ||
|  | 				point = 0.5f * (pointA + pointB); | ||
|  | 				separation = b2Dot(pointB - pointA, normal) - pc->radiusA - pc->radiusB; | ||
|  | 			} | ||
|  | 			break; | ||
|  | 
 | ||
|  | 		case b2Manifold::e_faceA: | ||
|  | 			{ | ||
|  | 				normal = b2Mul(xfA.q, pc->localNormal); | ||
|  | 				b2Vec2 planePoint = b2Mul(xfA, pc->localPoint); | ||
|  | 
 | ||
|  | 				b2Vec2 clipPoint = b2Mul(xfB, pc->localPoints[index]); | ||
|  | 				separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; | ||
|  | 				point = clipPoint; | ||
|  | 			} | ||
|  | 			break; | ||
|  | 
 | ||
|  | 		case b2Manifold::e_faceB: | ||
|  | 			{ | ||
|  | 				normal = b2Mul(xfB.q, pc->localNormal); | ||
|  | 				b2Vec2 planePoint = b2Mul(xfB, pc->localPoint); | ||
|  | 
 | ||
|  | 				b2Vec2 clipPoint = b2Mul(xfA, pc->localPoints[index]); | ||
|  | 				separation = b2Dot(clipPoint - planePoint, normal) - pc->radiusA - pc->radiusB; | ||
|  | 				point = clipPoint; | ||
|  | 
 | ||
|  | 				// Ensure normal points from A to B
 | ||
|  | 				normal = -normal; | ||
|  | 			} | ||
|  | 			break; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Vec2 normal; | ||
|  | 	b2Vec2 point; | ||
|  | 	float32 separation; | ||
|  | }; | ||
|  | 
 | ||
|  | // Sequential solver.
 | ||
|  | bool b2ContactSolver::SolvePositionConstraints() | ||
|  | { | ||
|  | 	float32 minSeparation = 0.0f; | ||
|  | 
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		b2ContactPositionConstraint* pc = m_positionConstraints + i; | ||
|  | 
 | ||
|  | 		int32 indexA = pc->indexA; | ||
|  | 		int32 indexB = pc->indexB; | ||
|  | 		b2Vec2 localCenterA = pc->localCenterA; | ||
|  | 		float32 mA = pc->invMassA; | ||
|  | 		float32 iA = pc->invIA; | ||
|  | 		b2Vec2 localCenterB = pc->localCenterB; | ||
|  | 		float32 mB = pc->invMassB; | ||
|  | 		float32 iB = pc->invIB; | ||
|  | 		int32 pointCount = pc->pointCount; | ||
|  | 
 | ||
|  | 		b2Vec2 cA = m_positions[indexA].c; | ||
|  | 		float32 aA = m_positions[indexA].a; | ||
|  | 
 | ||
|  | 		b2Vec2 cB = m_positions[indexB].c; | ||
|  | 		float32 aB = m_positions[indexB].a; | ||
|  | 
 | ||
|  | 		// Solve normal constraints
 | ||
|  | 		for (int32 j = 0; j < pointCount; ++j) | ||
|  | 		{ | ||
|  | 			b2Transform xfA, xfB; | ||
|  | 			xfA.q.Set(aA); | ||
|  | 			xfB.q.Set(aB); | ||
|  | 			xfA.p = cA - b2Mul(xfA.q, localCenterA); | ||
|  | 			xfB.p = cB - b2Mul(xfB.q, localCenterB); | ||
|  | 
 | ||
|  | 			b2PositionSolverManifold psm; | ||
|  | 			psm.Initialize(pc, xfA, xfB, j); | ||
|  | 			b2Vec2 normal = psm.normal; | ||
|  | 
 | ||
|  | 			b2Vec2 point = psm.point; | ||
|  | 			float32 separation = psm.separation; | ||
|  | 
 | ||
|  | 			b2Vec2 rA = point - cA; | ||
|  | 			b2Vec2 rB = point - cB; | ||
|  | 
 | ||
|  | 			// Track max constraint error.
 | ||
|  | 			minSeparation = b2Min(minSeparation, separation); | ||
|  | 
 | ||
|  | 			// Prevent large corrections and allow slop.
 | ||
|  | 			float32 C = b2Clamp(b2_baumgarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); | ||
|  | 
 | ||
|  | 			// Compute the effective mass.
 | ||
|  | 			float32 rnA = b2Cross(rA, normal); | ||
|  | 			float32 rnB = b2Cross(rB, normal); | ||
|  | 			float32 K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; | ||
|  | 
 | ||
|  | 			// Compute normal impulse
 | ||
|  | 			float32 impulse = K > 0.0f ? - C / K : 0.0f; | ||
|  | 
 | ||
|  | 			b2Vec2 P = impulse * normal; | ||
|  | 
 | ||
|  | 			cA -= mA * P; | ||
|  | 			aA -= iA * b2Cross(rA, P); | ||
|  | 
 | ||
|  | 			cB += mB * P; | ||
|  | 			aB += iB * b2Cross(rB, P); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		m_positions[indexA].c = cA; | ||
|  | 		m_positions[indexA].a = aA; | ||
|  | 
 | ||
|  | 		m_positions[indexB].c = cB; | ||
|  | 		m_positions[indexB].a = aB; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// We can't expect minSpeparation >= -b2_linearSlop because we don't
 | ||
|  | 	// push the separation above -b2_linearSlop.
 | ||
|  | 	return minSeparation >= -3.0f * b2_linearSlop; | ||
|  | } | ||
|  | 
 | ||
|  | // Sequential position solver for position constraints.
 | ||
|  | bool b2ContactSolver::SolveTOIPositionConstraints(int32 toiIndexA, int32 toiIndexB) | ||
|  | { | ||
|  | 	float32 minSeparation = 0.0f; | ||
|  | 
 | ||
|  | 	for (int32 i = 0; i < m_count; ++i) | ||
|  | 	{ | ||
|  | 		b2ContactPositionConstraint* pc = m_positionConstraints + i; | ||
|  | 
 | ||
|  | 		int32 indexA = pc->indexA; | ||
|  | 		int32 indexB = pc->indexB; | ||
|  | 		b2Vec2 localCenterA = pc->localCenterA; | ||
|  | 		b2Vec2 localCenterB = pc->localCenterB; | ||
|  | 		int32 pointCount = pc->pointCount; | ||
|  | 
 | ||
|  | 		float32 mA = 0.0f; | ||
|  | 		float32 iA = 0.0f; | ||
|  | 		if (indexA == toiIndexA || indexA == toiIndexB) | ||
|  | 		{ | ||
|  | 			mA = pc->invMassA; | ||
|  | 			iA = pc->invIA; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		float32 mB = 0.0f; | ||
|  | 		float32 iB = 0.; | ||
|  | 		if (indexB == toiIndexA || indexB == toiIndexB) | ||
|  | 		{ | ||
|  | 			mB = pc->invMassB; | ||
|  | 			iB = pc->invIB; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		b2Vec2 cA = m_positions[indexA].c; | ||
|  | 		float32 aA = m_positions[indexA].a; | ||
|  | 
 | ||
|  | 		b2Vec2 cB = m_positions[indexB].c; | ||
|  | 		float32 aB = m_positions[indexB].a; | ||
|  | 
 | ||
|  | 		// Solve normal constraints
 | ||
|  | 		for (int32 j = 0; j < pointCount; ++j) | ||
|  | 		{ | ||
|  | 			b2Transform xfA, xfB; | ||
|  | 			xfA.q.Set(aA); | ||
|  | 			xfB.q.Set(aB); | ||
|  | 			xfA.p = cA - b2Mul(xfA.q, localCenterA); | ||
|  | 			xfB.p = cB - b2Mul(xfB.q, localCenterB); | ||
|  | 
 | ||
|  | 			b2PositionSolverManifold psm; | ||
|  | 			psm.Initialize(pc, xfA, xfB, j); | ||
|  | 			b2Vec2 normal = psm.normal; | ||
|  | 
 | ||
|  | 			b2Vec2 point = psm.point; | ||
|  | 			float32 separation = psm.separation; | ||
|  | 
 | ||
|  | 			b2Vec2 rA = point - cA; | ||
|  | 			b2Vec2 rB = point - cB; | ||
|  | 
 | ||
|  | 			// Track max constraint error.
 | ||
|  | 			minSeparation = b2Min(minSeparation, separation); | ||
|  | 
 | ||
|  | 			// Prevent large corrections and allow slop.
 | ||
|  | 			float32 C = b2Clamp(b2_toiBaugarte * (separation + b2_linearSlop), -b2_maxLinearCorrection, 0.0f); | ||
|  | 
 | ||
|  | 			// Compute the effective mass.
 | ||
|  | 			float32 rnA = b2Cross(rA, normal); | ||
|  | 			float32 rnB = b2Cross(rB, normal); | ||
|  | 			float32 K = mA + mB + iA * rnA * rnA + iB * rnB * rnB; | ||
|  | 
 | ||
|  | 			// Compute normal impulse
 | ||
|  | 			float32 impulse = K > 0.0f ? - C / K : 0.0f; | ||
|  | 
 | ||
|  | 			b2Vec2 P = impulse * normal; | ||
|  | 
 | ||
|  | 			cA -= mA * P; | ||
|  | 			aA -= iA * b2Cross(rA, P); | ||
|  | 
 | ||
|  | 			cB += mB * P; | ||
|  | 			aB += iB * b2Cross(rB, P); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		m_positions[indexA].c = cA; | ||
|  | 		m_positions[indexA].a = aA; | ||
|  | 
 | ||
|  | 		m_positions[indexB].c = cB; | ||
|  | 		m_positions[indexB].a = aB; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// We can't expect minSpeparation >= -b2_linearSlop because we don't
 | ||
|  | 	// push the separation above -b2_linearSlop.
 | ||
|  | 	return minSeparation >= -1.5f * b2_linearSlop; | ||
|  | } |