261 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			261 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "Box2D/Dynamics/Joints/b2DistanceJoint.h"
 | ||
|  | #include "Box2D/Dynamics/b2Body.h"
 | ||
|  | #include "Box2D/Dynamics/b2TimeStep.h"
 | ||
|  | 
 | ||
|  | // 1-D constrained system
 | ||
|  | // m (v2 - v1) = lambda
 | ||
|  | // v2 + (beta/h) * x1 + gamma * lambda = 0, gamma has units of inverse mass.
 | ||
|  | // x2 = x1 + h * v2
 | ||
|  | 
 | ||
|  | // 1-D mass-damper-spring system
 | ||
|  | // m (v2 - v1) + h * d * v2 + h * k * 
 | ||
|  | 
 | ||
|  | // C = norm(p2 - p1) - L
 | ||
|  | // u = (p2 - p1) / norm(p2 - p1)
 | ||
|  | // Cdot = dot(u, v2 + cross(w2, r2) - v1 - cross(w1, r1))
 | ||
|  | // J = [-u -cross(r1, u) u cross(r2, u)]
 | ||
|  | // K = J * invM * JT
 | ||
|  | //   = invMass1 + invI1 * cross(r1, u)^2 + invMass2 + invI2 * cross(r2, u)^2
 | ||
|  | 
 | ||
|  | void b2DistanceJointDef::Initialize(b2Body* b1, b2Body* b2, | ||
|  | 									const b2Vec2& anchor1, const b2Vec2& anchor2) | ||
|  | { | ||
|  | 	bodyA = b1; | ||
|  | 	bodyB = b2; | ||
|  | 	localAnchorA = bodyA->GetLocalPoint(anchor1); | ||
|  | 	localAnchorB = bodyB->GetLocalPoint(anchor2); | ||
|  | 	b2Vec2 d = anchor2 - anchor1; | ||
|  | 	length = d.Length(); | ||
|  | } | ||
|  | 
 | ||
|  | b2DistanceJoint::b2DistanceJoint(const b2DistanceJointDef* def) | ||
|  | : b2Joint(def) | ||
|  | { | ||
|  | 	m_localAnchorA = def->localAnchorA; | ||
|  | 	m_localAnchorB = def->localAnchorB; | ||
|  | 	m_length = def->length; | ||
|  | 	m_frequencyHz = def->frequencyHz; | ||
|  | 	m_dampingRatio = def->dampingRatio; | ||
|  | 	m_impulse = 0.0f; | ||
|  | 	m_gamma = 0.0f; | ||
|  | 	m_bias = 0.0f; | ||
|  | } | ||
|  | 
 | ||
|  | void b2DistanceJoint::InitVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	m_indexA = m_bodyA->m_islandIndex; | ||
|  | 	m_indexB = m_bodyB->m_islandIndex; | ||
|  | 	m_localCenterA = m_bodyA->m_sweep.localCenter; | ||
|  | 	m_localCenterB = m_bodyB->m_sweep.localCenter; | ||
|  | 	m_invMassA = m_bodyA->m_invMass; | ||
|  | 	m_invMassB = m_bodyB->m_invMass; | ||
|  | 	m_invIA = m_bodyA->m_invI; | ||
|  | 	m_invIB = m_bodyB->m_invI; | ||
|  | 
 | ||
|  | 	b2Vec2 cA = data.positions[m_indexA].c; | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 
 | ||
|  | 	b2Vec2 cB = data.positions[m_indexB].c; | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 	m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 	m_u = cB + m_rB - cA - m_rA; | ||
|  | 
 | ||
|  | 	// Handle singularity.
 | ||
|  | 	float32 length = m_u.Length(); | ||
|  | 	if (length > b2_linearSlop) | ||
|  | 	{ | ||
|  | 		m_u *= 1.0f / length; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_u.Set(0.0f, 0.0f); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	float32 crAu = b2Cross(m_rA, m_u); | ||
|  | 	float32 crBu = b2Cross(m_rB, m_u); | ||
|  | 	float32 invMass = m_invMassA + m_invIA * crAu * crAu + m_invMassB + m_invIB * crBu * crBu; | ||
|  | 
 | ||
|  | 	// Compute the effective mass matrix.
 | ||
|  | 	m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; | ||
|  | 
 | ||
|  | 	if (m_frequencyHz > 0.0f) | ||
|  | 	{ | ||
|  | 		float32 C = length - m_length; | ||
|  | 
 | ||
|  | 		// Frequency
 | ||
|  | 		float32 omega = 2.0f * b2_pi * m_frequencyHz; | ||
|  | 
 | ||
|  | 		// Damping coefficient
 | ||
|  | 		float32 d = 2.0f * m_mass * m_dampingRatio * omega; | ||
|  | 
 | ||
|  | 		// Spring stiffness
 | ||
|  | 		float32 k = m_mass * omega * omega; | ||
|  | 
 | ||
|  | 		// magic formulas
 | ||
|  | 		float32 h = data.step.dt; | ||
|  | 		m_gamma = h * (d + h * k); | ||
|  | 		m_gamma = m_gamma != 0.0f ? 1.0f / m_gamma : 0.0f; | ||
|  | 		m_bias = C * h * k * m_gamma; | ||
|  | 
 | ||
|  | 		invMass += m_gamma; | ||
|  | 		m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_gamma = 0.0f; | ||
|  | 		m_bias = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (data.step.warmStarting) | ||
|  | 	{ | ||
|  | 		// Scale the impulse to support a variable time step.
 | ||
|  | 		m_impulse *= data.step.dtRatio; | ||
|  | 
 | ||
|  | 		b2Vec2 P = m_impulse * m_u; | ||
|  | 		vA -= m_invMassA * P; | ||
|  | 		wA -= m_invIA * b2Cross(m_rA, P); | ||
|  | 		vB += m_invMassB * P; | ||
|  | 		wB += m_invIB * b2Cross(m_rB, P); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_impulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | void b2DistanceJoint::SolveVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	// Cdot = dot(u, v + cross(w, r))
 | ||
|  | 	b2Vec2 vpA = vA + b2Cross(wA, m_rA); | ||
|  | 	b2Vec2 vpB = vB + b2Cross(wB, m_rB); | ||
|  | 	float32 Cdot = b2Dot(m_u, vpB - vpA); | ||
|  | 
 | ||
|  | 	float32 impulse = -m_mass * (Cdot + m_bias + m_gamma * m_impulse); | ||
|  | 	m_impulse += impulse; | ||
|  | 
 | ||
|  | 	b2Vec2 P = impulse * m_u; | ||
|  | 	vA -= m_invMassA * P; | ||
|  | 	wA -= m_invIA * b2Cross(m_rA, P); | ||
|  | 	vB += m_invMassB * P; | ||
|  | 	wB += m_invIB * b2Cross(m_rB, P); | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | bool b2DistanceJoint::SolvePositionConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	if (m_frequencyHz > 0.0f) | ||
|  | 	{ | ||
|  | 		// There is no position correction for soft distance constraints.
 | ||
|  | 		return true; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Vec2 cA = data.positions[m_indexA].c; | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 cB = data.positions[m_indexB].c; | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 	b2Vec2 u = cB + rB - cA - rA; | ||
|  | 
 | ||
|  | 	float32 length = u.Normalize(); | ||
|  | 	float32 C = length - m_length; | ||
|  | 	C = b2Clamp(C, -b2_maxLinearCorrection, b2_maxLinearCorrection); | ||
|  | 
 | ||
|  | 	float32 impulse = -m_mass * C; | ||
|  | 	b2Vec2 P = impulse * u; | ||
|  | 
 | ||
|  | 	cA -= m_invMassA * P; | ||
|  | 	aA -= m_invIA * b2Cross(rA, P); | ||
|  | 	cB += m_invMassB * P; | ||
|  | 	aB += m_invIB * b2Cross(rB, P); | ||
|  | 
 | ||
|  | 	data.positions[m_indexA].c = cA; | ||
|  | 	data.positions[m_indexA].a = aA; | ||
|  | 	data.positions[m_indexB].c = cB; | ||
|  | 	data.positions[m_indexB].a = aB; | ||
|  | 
 | ||
|  | 	return b2Abs(C) < b2_linearSlop; | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2DistanceJoint::GetAnchorA() const | ||
|  | { | ||
|  | 	return m_bodyA->GetWorldPoint(m_localAnchorA); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2DistanceJoint::GetAnchorB() const | ||
|  | { | ||
|  | 	return m_bodyB->GetWorldPoint(m_localAnchorB); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2DistanceJoint::GetReactionForce(float32 inv_dt) const | ||
|  | { | ||
|  | 	b2Vec2 F = (inv_dt * m_impulse) * m_u; | ||
|  | 	return F; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2DistanceJoint::GetReactionTorque(float32 inv_dt) const | ||
|  | { | ||
|  | 	B2_NOT_USED(inv_dt); | ||
|  | 	return 0.0f; | ||
|  | } | ||
|  | 
 | ||
|  | void b2DistanceJoint::Dump() | ||
|  | { | ||
|  | 	int32 indexA = m_bodyA->m_islandIndex; | ||
|  | 	int32 indexB = m_bodyB->m_islandIndex; | ||
|  | 
 | ||
|  | 	b2Log("  b2DistanceJointDef jd;\n"); | ||
|  | 	b2Log("  jd.bodyA = bodies[%d];\n", indexA); | ||
|  | 	b2Log("  jd.bodyB = bodies[%d];\n", indexB); | ||
|  | 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected); | ||
|  | 	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | ||
|  | 	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | ||
|  | 	b2Log("  jd.length = %.15lef;\n", m_length); | ||
|  | 	b2Log("  jd.frequencyHz = %.15lef;\n", m_frequencyHz); | ||
|  | 	b2Log("  jd.dampingRatio = %.15lef;\n", m_dampingRatio); | ||
|  | 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | ||
|  | } |