252 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			252 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "Box2D/Dynamics/Joints/b2FrictionJoint.h"
 | ||
|  | #include "Box2D/Dynamics/b2Body.h"
 | ||
|  | #include "Box2D/Dynamics/b2TimeStep.h"
 | ||
|  | 
 | ||
|  | // Point-to-point constraint
 | ||
|  | // Cdot = v2 - v1
 | ||
|  | //      = v2 + cross(w2, r2) - v1 - cross(w1, r1)
 | ||
|  | // J = [-I -r1_skew I r2_skew ]
 | ||
|  | // Identity used:
 | ||
|  | // w k % (rx i + ry j) = w * (-ry i + rx j)
 | ||
|  | 
 | ||
|  | // Angle constraint
 | ||
|  | // Cdot = w2 - w1
 | ||
|  | // J = [0 0 -1 0 0 1]
 | ||
|  | // K = invI1 + invI2
 | ||
|  | 
 | ||
|  | void b2FrictionJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) | ||
|  | { | ||
|  | 	bodyA = bA; | ||
|  | 	bodyB = bB; | ||
|  | 	localAnchorA = bodyA->GetLocalPoint(anchor); | ||
|  | 	localAnchorB = bodyB->GetLocalPoint(anchor); | ||
|  | } | ||
|  | 
 | ||
|  | b2FrictionJoint::b2FrictionJoint(const b2FrictionJointDef* def) | ||
|  | : b2Joint(def) | ||
|  | { | ||
|  | 	m_localAnchorA = def->localAnchorA; | ||
|  | 	m_localAnchorB = def->localAnchorB; | ||
|  | 
 | ||
|  | 	m_linearImpulse.SetZero(); | ||
|  | 	m_angularImpulse = 0.0f; | ||
|  | 
 | ||
|  | 	m_maxForce = def->maxForce; | ||
|  | 	m_maxTorque = def->maxTorque; | ||
|  | } | ||
|  | 
 | ||
|  | void b2FrictionJoint::InitVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	m_indexA = m_bodyA->m_islandIndex; | ||
|  | 	m_indexB = m_bodyB->m_islandIndex; | ||
|  | 	m_localCenterA = m_bodyA->m_sweep.localCenter; | ||
|  | 	m_localCenterB = m_bodyB->m_sweep.localCenter; | ||
|  | 	m_invMassA = m_bodyA->m_invMass; | ||
|  | 	m_invMassB = m_bodyB->m_invMass; | ||
|  | 	m_invIA = m_bodyA->m_invI; | ||
|  | 	m_invIB = m_bodyB->m_invI; | ||
|  | 
 | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 
 | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	// Compute the effective mass matrix.
 | ||
|  | 	m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 	m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 
 | ||
|  | 	// J = [-I -r1_skew I r2_skew]
 | ||
|  | 	//     [ 0       -1 0       1]
 | ||
|  | 	// r_skew = [-ry; rx]
 | ||
|  | 
 | ||
|  | 	// Matlab
 | ||
|  | 	// K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
 | ||
|  | 	//     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
 | ||
|  | 	//     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]
 | ||
|  | 
 | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	b2Mat22 K; | ||
|  | 	K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y; | ||
|  | 	K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y; | ||
|  | 	K.ey.x = K.ex.y; | ||
|  | 	K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x; | ||
|  | 
 | ||
|  | 	m_linearMass = K.GetInverse(); | ||
|  | 
 | ||
|  | 	m_angularMass = iA + iB; | ||
|  | 	if (m_angularMass > 0.0f) | ||
|  | 	{ | ||
|  | 		m_angularMass = 1.0f / m_angularMass; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (data.step.warmStarting) | ||
|  | 	{ | ||
|  | 		// Scale impulses to support a variable time step.
 | ||
|  | 		m_linearImpulse *= data.step.dtRatio; | ||
|  | 		m_angularImpulse *= data.step.dtRatio; | ||
|  | 
 | ||
|  | 		b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y); | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse); | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * (b2Cross(m_rB, P) + m_angularImpulse); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_linearImpulse.SetZero(); | ||
|  | 		m_angularImpulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | void b2FrictionJoint::SolveVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	float32 h = data.step.dt; | ||
|  | 
 | ||
|  | 	// Solve angular friction
 | ||
|  | 	{ | ||
|  | 		float32 Cdot = wB - wA; | ||
|  | 		float32 impulse = -m_angularMass * Cdot; | ||
|  | 
 | ||
|  | 		float32 oldImpulse = m_angularImpulse; | ||
|  | 		float32 maxImpulse = h * m_maxTorque; | ||
|  | 		m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse); | ||
|  | 		impulse = m_angularImpulse - oldImpulse; | ||
|  | 
 | ||
|  | 		wA -= iA * impulse; | ||
|  | 		wB += iB * impulse; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Solve linear friction
 | ||
|  | 	{ | ||
|  | 		b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); | ||
|  | 
 | ||
|  | 		b2Vec2 impulse = -b2Mul(m_linearMass, Cdot); | ||
|  | 		b2Vec2 oldImpulse = m_linearImpulse; | ||
|  | 		m_linearImpulse += impulse; | ||
|  | 
 | ||
|  | 		float32 maxImpulse = h * m_maxForce; | ||
|  | 
 | ||
|  | 		if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse) | ||
|  | 		{ | ||
|  | 			m_linearImpulse.Normalize(); | ||
|  | 			m_linearImpulse *= maxImpulse; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		impulse = m_linearImpulse - oldImpulse; | ||
|  | 
 | ||
|  | 		vA -= mA * impulse; | ||
|  | 		wA -= iA * b2Cross(m_rA, impulse); | ||
|  | 
 | ||
|  | 		vB += mB * impulse; | ||
|  | 		wB += iB * b2Cross(m_rB, impulse); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | bool b2FrictionJoint::SolvePositionConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	B2_NOT_USED(data); | ||
|  | 
 | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2FrictionJoint::GetAnchorA() const | ||
|  | { | ||
|  | 	return m_bodyA->GetWorldPoint(m_localAnchorA); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2FrictionJoint::GetAnchorB() const | ||
|  | { | ||
|  | 	return m_bodyB->GetWorldPoint(m_localAnchorB); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2FrictionJoint::GetReactionForce(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * m_linearImpulse; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2FrictionJoint::GetReactionTorque(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * m_angularImpulse; | ||
|  | } | ||
|  | 
 | ||
|  | void b2FrictionJoint::SetMaxForce(float32 force) | ||
|  | { | ||
|  | 	b2Assert(b2IsValid(force) && force >= 0.0f); | ||
|  | 	m_maxForce = force; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2FrictionJoint::GetMaxForce() const | ||
|  | { | ||
|  | 	return m_maxForce; | ||
|  | } | ||
|  | 
 | ||
|  | void b2FrictionJoint::SetMaxTorque(float32 torque) | ||
|  | { | ||
|  | 	b2Assert(b2IsValid(torque) && torque >= 0.0f); | ||
|  | 	m_maxTorque = torque; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2FrictionJoint::GetMaxTorque() const | ||
|  | { | ||
|  | 	return m_maxTorque; | ||
|  | } | ||
|  | 
 | ||
|  | void b2FrictionJoint::Dump() | ||
|  | { | ||
|  | 	int32 indexA = m_bodyA->m_islandIndex; | ||
|  | 	int32 indexB = m_bodyB->m_islandIndex; | ||
|  | 
 | ||
|  | 	b2Log("  b2FrictionJointDef jd;\n"); | ||
|  | 	b2Log("  jd.bodyA = bodies[%d];\n", indexA); | ||
|  | 	b2Log("  jd.bodyB = bodies[%d];\n", indexB); | ||
|  | 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected); | ||
|  | 	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | ||
|  | 	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | ||
|  | 	b2Log("  jd.maxForce = %.15lef;\n", m_maxForce); | ||
|  | 	b2Log("  jd.maxTorque = %.15lef;\n", m_maxTorque); | ||
|  | 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | ||
|  | } |