643 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			643 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "Box2D/Dynamics/Joints/b2PrismaticJoint.h"
 | ||
|  | #include "Box2D/Dynamics/b2Body.h"
 | ||
|  | #include "Box2D/Dynamics/b2TimeStep.h"
 | ||
|  | 
 | ||
|  | // Linear constraint (point-to-line)
 | ||
|  | // d = p2 - p1 = x2 + r2 - x1 - r1
 | ||
|  | // C = dot(perp, d)
 | ||
|  | // Cdot = dot(d, cross(w1, perp)) + dot(perp, v2 + cross(w2, r2) - v1 - cross(w1, r1))
 | ||
|  | //      = -dot(perp, v1) - dot(cross(d + r1, perp), w1) + dot(perp, v2) + dot(cross(r2, perp), v2)
 | ||
|  | // J = [-perp, -cross(d + r1, perp), perp, cross(r2,perp)]
 | ||
|  | //
 | ||
|  | // Angular constraint
 | ||
|  | // C = a2 - a1 + a_initial
 | ||
|  | // Cdot = w2 - w1
 | ||
|  | // J = [0 0 -1 0 0 1]
 | ||
|  | //
 | ||
|  | // K = J * invM * JT
 | ||
|  | //
 | ||
|  | // J = [-a -s1 a s2]
 | ||
|  | //     [0  -1  0  1]
 | ||
|  | // a = perp
 | ||
|  | // s1 = cross(d + r1, a) = cross(p2 - x1, a)
 | ||
|  | // s2 = cross(r2, a) = cross(p2 - x2, a)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | // Motor/Limit linear constraint
 | ||
|  | // C = dot(ax1, d)
 | ||
|  | // Cdot = = -dot(ax1, v1) - dot(cross(d + r1, ax1), w1) + dot(ax1, v2) + dot(cross(r2, ax1), v2)
 | ||
|  | // J = [-ax1 -cross(d+r1,ax1) ax1 cross(r2,ax1)]
 | ||
|  | 
 | ||
|  | // Block Solver
 | ||
|  | // We develop a block solver that includes the joint limit. This makes the limit stiff (inelastic) even
 | ||
|  | // when the mass has poor distribution (leading to large torques about the joint anchor points).
 | ||
|  | //
 | ||
|  | // The Jacobian has 3 rows:
 | ||
|  | // J = [-uT -s1 uT s2] // linear
 | ||
|  | //     [0   -1   0  1] // angular
 | ||
|  | //     [-vT -a1 vT a2] // limit
 | ||
|  | //
 | ||
|  | // u = perp
 | ||
|  | // v = axis
 | ||
|  | // s1 = cross(d + r1, u), s2 = cross(r2, u)
 | ||
|  | // a1 = cross(d + r1, v), a2 = cross(r2, v)
 | ||
|  | 
 | ||
|  | // M * (v2 - v1) = JT * df
 | ||
|  | // J * v2 = bias
 | ||
|  | //
 | ||
|  | // v2 = v1 + invM * JT * df
 | ||
|  | // J * (v1 + invM * JT * df) = bias
 | ||
|  | // K * df = bias - J * v1 = -Cdot
 | ||
|  | // K = J * invM * JT
 | ||
|  | // Cdot = J * v1 - bias
 | ||
|  | //
 | ||
|  | // Now solve for f2.
 | ||
|  | // df = f2 - f1
 | ||
|  | // K * (f2 - f1) = -Cdot
 | ||
|  | // f2 = invK * (-Cdot) + f1
 | ||
|  | //
 | ||
|  | // Clamp accumulated limit impulse.
 | ||
|  | // lower: f2(3) = max(f2(3), 0)
 | ||
|  | // upper: f2(3) = min(f2(3), 0)
 | ||
|  | //
 | ||
|  | // Solve for correct f2(1:2)
 | ||
|  | // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:3) * f1
 | ||
|  | //                       = -Cdot(1:2) - K(1:2,3) * f2(3) + K(1:2,1:2) * f1(1:2) + K(1:2,3) * f1(3)
 | ||
|  | // K(1:2, 1:2) * f2(1:2) = -Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3)) + K(1:2,1:2) * f1(1:2)
 | ||
|  | // f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2)
 | ||
|  | //
 | ||
|  | // Now compute impulse to be applied:
 | ||
|  | // df = f2 - f1
 | ||
|  | 
 | ||
|  | void b2PrismaticJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) | ||
|  | { | ||
|  | 	bodyA = bA; | ||
|  | 	bodyB = bB; | ||
|  | 	localAnchorA = bodyA->GetLocalPoint(anchor); | ||
|  | 	localAnchorB = bodyB->GetLocalPoint(anchor); | ||
|  | 	localAxisA = bodyA->GetLocalVector(axis); | ||
|  | 	referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); | ||
|  | } | ||
|  | 
 | ||
|  | b2PrismaticJoint::b2PrismaticJoint(const b2PrismaticJointDef* def) | ||
|  | : b2Joint(def) | ||
|  | { | ||
|  | 	m_localAnchorA = def->localAnchorA; | ||
|  | 	m_localAnchorB = def->localAnchorB; | ||
|  | 	m_localXAxisA = def->localAxisA; | ||
|  | 	m_localXAxisA.Normalize(); | ||
|  | 	m_localYAxisA = b2Cross(1.0f, m_localXAxisA); | ||
|  | 	m_referenceAngle = def->referenceAngle; | ||
|  | 
 | ||
|  | 	m_impulse.SetZero(); | ||
|  | 	m_motorMass = 0.0f; | ||
|  | 	m_motorImpulse = 0.0f; | ||
|  | 
 | ||
|  | 	m_lowerTranslation = def->lowerTranslation; | ||
|  | 	m_upperTranslation = def->upperTranslation; | ||
|  | 	m_maxMotorForce = def->maxMotorForce; | ||
|  | 	m_motorSpeed = def->motorSpeed; | ||
|  | 	m_enableLimit = def->enableLimit; | ||
|  | 	m_enableMotor = def->enableMotor; | ||
|  | 	m_limitState = e_inactiveLimit; | ||
|  | 
 | ||
|  | 	m_axis.SetZero(); | ||
|  | 	m_perp.SetZero(); | ||
|  | } | ||
|  | 
 | ||
|  | void b2PrismaticJoint::InitVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	m_indexA = m_bodyA->m_islandIndex; | ||
|  | 	m_indexB = m_bodyB->m_islandIndex; | ||
|  | 	m_localCenterA = m_bodyA->m_sweep.localCenter; | ||
|  | 	m_localCenterB = m_bodyB->m_sweep.localCenter; | ||
|  | 	m_invMassA = m_bodyA->m_invMass; | ||
|  | 	m_invMassB = m_bodyB->m_invMass; | ||
|  | 	m_invIA = m_bodyA->m_invI; | ||
|  | 	m_invIB = m_bodyB->m_invI; | ||
|  | 
 | ||
|  | 	b2Vec2 cA = data.positions[m_indexA].c; | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 
 | ||
|  | 	b2Vec2 cB = data.positions[m_indexB].c; | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	// Compute the effective masses.
 | ||
|  | 	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 	b2Vec2 d = (cB - cA) + rB - rA; | ||
|  | 
 | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	// Compute motor Jacobian and effective mass.
 | ||
|  | 	{ | ||
|  | 		m_axis = b2Mul(qA, m_localXAxisA); | ||
|  | 		m_a1 = b2Cross(d + rA, m_axis); | ||
|  | 		m_a2 = b2Cross(rB, m_axis); | ||
|  | 
 | ||
|  | 		m_motorMass = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; | ||
|  | 		if (m_motorMass > 0.0f) | ||
|  | 		{ | ||
|  | 			m_motorMass = 1.0f / m_motorMass; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Prismatic constraint.
 | ||
|  | 	{ | ||
|  | 		m_perp = b2Mul(qA, m_localYAxisA); | ||
|  | 
 | ||
|  | 		m_s1 = b2Cross(d + rA, m_perp); | ||
|  | 		m_s2 = b2Cross(rB, m_perp); | ||
|  | 
 | ||
|  | 		float32 k11 = mA + mB + iA * m_s1 * m_s1 + iB * m_s2 * m_s2; | ||
|  | 		float32 k12 = iA * m_s1 + iB * m_s2; | ||
|  | 		float32 k13 = iA * m_s1 * m_a1 + iB * m_s2 * m_a2; | ||
|  | 		float32 k22 = iA + iB; | ||
|  | 		if (k22 == 0.0f) | ||
|  | 		{ | ||
|  | 			// For bodies with fixed rotation.
 | ||
|  | 			k22 = 1.0f; | ||
|  | 		} | ||
|  | 		float32 k23 = iA * m_a1 + iB * m_a2; | ||
|  | 		float32 k33 = mA + mB + iA * m_a1 * m_a1 + iB * m_a2 * m_a2; | ||
|  | 
 | ||
|  | 		m_K.ex.Set(k11, k12, k13); | ||
|  | 		m_K.ey.Set(k12, k22, k23); | ||
|  | 		m_K.ez.Set(k13, k23, k33); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Compute motor and limit terms.
 | ||
|  | 	if (m_enableLimit) | ||
|  | 	{ | ||
|  | 		float32 jointTranslation = b2Dot(m_axis, d); | ||
|  | 		if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) | ||
|  | 		{ | ||
|  | 			m_limitState = e_equalLimits; | ||
|  | 		} | ||
|  | 		else if (jointTranslation <= m_lowerTranslation) | ||
|  | 		{ | ||
|  | 			if (m_limitState != e_atLowerLimit) | ||
|  | 			{ | ||
|  | 				m_limitState = e_atLowerLimit; | ||
|  | 				m_impulse.z = 0.0f; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else if (jointTranslation >= m_upperTranslation) | ||
|  | 		{ | ||
|  | 			if (m_limitState != e_atUpperLimit) | ||
|  | 			{ | ||
|  | 				m_limitState = e_atUpperLimit; | ||
|  | 				m_impulse.z = 0.0f; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			m_limitState = e_inactiveLimit; | ||
|  | 			m_impulse.z = 0.0f; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_limitState = e_inactiveLimit; | ||
|  | 		m_impulse.z = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (m_enableMotor == false) | ||
|  | 	{ | ||
|  | 		m_motorImpulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (data.step.warmStarting) | ||
|  | 	{ | ||
|  | 		// Account for variable time step.
 | ||
|  | 		m_impulse *= data.step.dtRatio; | ||
|  | 		m_motorImpulse *= data.step.dtRatio; | ||
|  | 
 | ||
|  | 		b2Vec2 P = m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis; | ||
|  | 		float32 LA = m_impulse.x * m_s1 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a1; | ||
|  | 		float32 LB = m_impulse.x * m_s2 + m_impulse.y + (m_motorImpulse + m_impulse.z) * m_a2; | ||
|  | 
 | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * LA; | ||
|  | 
 | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * LB; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_impulse.SetZero(); | ||
|  | 		m_motorImpulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PrismaticJoint::SolveVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	// Solve linear motor constraint.
 | ||
|  | 	if (m_enableMotor && m_limitState != e_equalLimits) | ||
|  | 	{ | ||
|  | 		float32 Cdot = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA; | ||
|  | 		float32 impulse = m_motorMass * (m_motorSpeed - Cdot); | ||
|  | 		float32 oldImpulse = m_motorImpulse; | ||
|  | 		float32 maxImpulse = data.step.dt * m_maxMotorForce; | ||
|  | 		m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); | ||
|  | 		impulse = m_motorImpulse - oldImpulse; | ||
|  | 
 | ||
|  | 		b2Vec2 P = impulse * m_axis; | ||
|  | 		float32 LA = impulse * m_a1; | ||
|  | 		float32 LB = impulse * m_a2; | ||
|  | 
 | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * LA; | ||
|  | 
 | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * LB; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Vec2 Cdot1; | ||
|  | 	Cdot1.x = b2Dot(m_perp, vB - vA) + m_s2 * wB - m_s1 * wA; | ||
|  | 	Cdot1.y = wB - wA; | ||
|  | 
 | ||
|  | 	if (m_enableLimit && m_limitState != e_inactiveLimit) | ||
|  | 	{ | ||
|  | 		// Solve prismatic and limit constraint in block form.
 | ||
|  | 		float32 Cdot2; | ||
|  | 		Cdot2 = b2Dot(m_axis, vB - vA) + m_a2 * wB - m_a1 * wA; | ||
|  | 		b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); | ||
|  | 
 | ||
|  | 		b2Vec3 f1 = m_impulse; | ||
|  | 		b2Vec3 df =  m_K.Solve33(-Cdot); | ||
|  | 		m_impulse += df; | ||
|  | 
 | ||
|  | 		if (m_limitState == e_atLowerLimit) | ||
|  | 		{ | ||
|  | 			m_impulse.z = b2Max(m_impulse.z, 0.0f); | ||
|  | 		} | ||
|  | 		else if (m_limitState == e_atUpperLimit) | ||
|  | 		{ | ||
|  | 			m_impulse.z = b2Min(m_impulse.z, 0.0f); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// f2(1:2) = invK(1:2,1:2) * (-Cdot(1:2) - K(1:2,3) * (f2(3) - f1(3))) + f1(1:2)
 | ||
|  | 		b2Vec2 b = -Cdot1 - (m_impulse.z - f1.z) * b2Vec2(m_K.ez.x, m_K.ez.y); | ||
|  | 		b2Vec2 f2r = m_K.Solve22(b) + b2Vec2(f1.x, f1.y); | ||
|  | 		m_impulse.x = f2r.x; | ||
|  | 		m_impulse.y = f2r.y; | ||
|  | 
 | ||
|  | 		df = m_impulse - f1; | ||
|  | 
 | ||
|  | 		b2Vec2 P = df.x * m_perp + df.z * m_axis; | ||
|  | 		float32 LA = df.x * m_s1 + df.y + df.z * m_a1; | ||
|  | 		float32 LB = df.x * m_s2 + df.y + df.z * m_a2; | ||
|  | 
 | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * LA; | ||
|  | 
 | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * LB; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		// Limit is inactive, just solve the prismatic constraint in block form.
 | ||
|  | 		b2Vec2 df = m_K.Solve22(-Cdot1); | ||
|  | 		m_impulse.x += df.x; | ||
|  | 		m_impulse.y += df.y; | ||
|  | 
 | ||
|  | 		b2Vec2 P = df.x * m_perp; | ||
|  | 		float32 LA = df.x * m_s1 + df.y; | ||
|  | 		float32 LB = df.x * m_s2 + df.y; | ||
|  | 
 | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * LA; | ||
|  | 
 | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * LB; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | // A velocity based solver computes reaction forces(impulses) using the velocity constraint solver.Under this context,
 | ||
|  | // the position solver is not there to resolve forces.It is only there to cope with integration error.
 | ||
|  | //
 | ||
|  | // Therefore, the pseudo impulses in the position solver do not have any physical meaning.Thus it is okay if they suck.
 | ||
|  | //
 | ||
|  | // We could take the active state from the velocity solver.However, the joint might push past the limit when the velocity
 | ||
|  | // solver indicates the limit is inactive.
 | ||
|  | bool b2PrismaticJoint::SolvePositionConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	b2Vec2 cA = data.positions[m_indexA].c; | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 cB = data.positions[m_indexB].c; | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	// Compute fresh Jacobians
 | ||
|  | 	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 	b2Vec2 d = cB + rB - cA - rA; | ||
|  | 
 | ||
|  | 	b2Vec2 axis = b2Mul(qA, m_localXAxisA); | ||
|  | 	float32 a1 = b2Cross(d + rA, axis); | ||
|  | 	float32 a2 = b2Cross(rB, axis); | ||
|  | 	b2Vec2 perp = b2Mul(qA, m_localYAxisA); | ||
|  | 
 | ||
|  | 	float32 s1 = b2Cross(d + rA, perp); | ||
|  | 	float32 s2 = b2Cross(rB, perp); | ||
|  | 
 | ||
|  | 	b2Vec3 impulse; | ||
|  | 	b2Vec2 C1; | ||
|  | 	C1.x = b2Dot(perp, d); | ||
|  | 	C1.y = aB - aA - m_referenceAngle; | ||
|  | 
 | ||
|  | 	float32 linearError = b2Abs(C1.x); | ||
|  | 	float32 angularError = b2Abs(C1.y); | ||
|  | 
 | ||
|  | 	bool active = false; | ||
|  | 	float32 C2 = 0.0f; | ||
|  | 	if (m_enableLimit) | ||
|  | 	{ | ||
|  | 		float32 translation = b2Dot(axis, d); | ||
|  | 		if (b2Abs(m_upperTranslation - m_lowerTranslation) < 2.0f * b2_linearSlop) | ||
|  | 		{ | ||
|  | 			// Prevent large angular corrections
 | ||
|  | 			C2 = b2Clamp(translation, -b2_maxLinearCorrection, b2_maxLinearCorrection); | ||
|  | 			linearError = b2Max(linearError, b2Abs(translation)); | ||
|  | 			active = true; | ||
|  | 		} | ||
|  | 		else if (translation <= m_lowerTranslation) | ||
|  | 		{ | ||
|  | 			// Prevent large linear corrections and allow some slop.
 | ||
|  | 			C2 = b2Clamp(translation - m_lowerTranslation + b2_linearSlop, -b2_maxLinearCorrection, 0.0f); | ||
|  | 			linearError = b2Max(linearError, m_lowerTranslation - translation); | ||
|  | 			active = true; | ||
|  | 		} | ||
|  | 		else if (translation >= m_upperTranslation) | ||
|  | 		{ | ||
|  | 			// Prevent large linear corrections and allow some slop.
 | ||
|  | 			C2 = b2Clamp(translation - m_upperTranslation - b2_linearSlop, 0.0f, b2_maxLinearCorrection); | ||
|  | 			linearError = b2Max(linearError, translation - m_upperTranslation); | ||
|  | 			active = true; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (active) | ||
|  | 	{ | ||
|  | 		float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; | ||
|  | 		float32 k12 = iA * s1 + iB * s2; | ||
|  | 		float32 k13 = iA * s1 * a1 + iB * s2 * a2; | ||
|  | 		float32 k22 = iA + iB; | ||
|  | 		if (k22 == 0.0f) | ||
|  | 		{ | ||
|  | 			// For fixed rotation
 | ||
|  | 			k22 = 1.0f; | ||
|  | 		} | ||
|  | 		float32 k23 = iA * a1 + iB * a2; | ||
|  | 		float32 k33 = mA + mB + iA * a1 * a1 + iB * a2 * a2; | ||
|  | 
 | ||
|  | 		b2Mat33 K; | ||
|  | 		K.ex.Set(k11, k12, k13); | ||
|  | 		K.ey.Set(k12, k22, k23); | ||
|  | 		K.ez.Set(k13, k23, k33); | ||
|  | 
 | ||
|  | 		b2Vec3 C; | ||
|  | 		C.x = C1.x; | ||
|  | 		C.y = C1.y; | ||
|  | 		C.z = C2; | ||
|  | 
 | ||
|  | 		impulse = K.Solve33(-C); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		float32 k11 = mA + mB + iA * s1 * s1 + iB * s2 * s2; | ||
|  | 		float32 k12 = iA * s1 + iB * s2; | ||
|  | 		float32 k22 = iA + iB; | ||
|  | 		if (k22 == 0.0f) | ||
|  | 		{ | ||
|  | 			k22 = 1.0f; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		b2Mat22 K; | ||
|  | 		K.ex.Set(k11, k12); | ||
|  | 		K.ey.Set(k12, k22); | ||
|  | 
 | ||
|  | 		b2Vec2 impulse1 = K.Solve(-C1); | ||
|  | 		impulse.x = impulse1.x; | ||
|  | 		impulse.y = impulse1.y; | ||
|  | 		impulse.z = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Vec2 P = impulse.x * perp + impulse.z * axis; | ||
|  | 	float32 LA = impulse.x * s1 + impulse.y + impulse.z * a1; | ||
|  | 	float32 LB = impulse.x * s2 + impulse.y + impulse.z * a2; | ||
|  | 
 | ||
|  | 	cA -= mA * P; | ||
|  | 	aA -= iA * LA; | ||
|  | 	cB += mB * P; | ||
|  | 	aB += iB * LB; | ||
|  | 
 | ||
|  | 	data.positions[m_indexA].c = cA; | ||
|  | 	data.positions[m_indexA].a = aA; | ||
|  | 	data.positions[m_indexB].c = cB; | ||
|  | 	data.positions[m_indexB].a = aB; | ||
|  | 
 | ||
|  | 	return linearError <= b2_linearSlop && angularError <= b2_angularSlop; | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2PrismaticJoint::GetAnchorA() const | ||
|  | { | ||
|  | 	return m_bodyA->GetWorldPoint(m_localAnchorA); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2PrismaticJoint::GetAnchorB() const | ||
|  | { | ||
|  | 	return m_bodyB->GetWorldPoint(m_localAnchorB); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2PrismaticJoint::GetReactionForce(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * (m_impulse.x * m_perp + (m_motorImpulse + m_impulse.z) * m_axis); | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2PrismaticJoint::GetReactionTorque(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * m_impulse.y; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2PrismaticJoint::GetJointTranslation() const | ||
|  | { | ||
|  | 	b2Vec2 pA = m_bodyA->GetWorldPoint(m_localAnchorA); | ||
|  | 	b2Vec2 pB = m_bodyB->GetWorldPoint(m_localAnchorB); | ||
|  | 	b2Vec2 d = pB - pA; | ||
|  | 	b2Vec2 axis = m_bodyA->GetWorldVector(m_localXAxisA); | ||
|  | 
 | ||
|  | 	float32 translation = b2Dot(d, axis); | ||
|  | 	return translation; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2PrismaticJoint::GetJointSpeed() const | ||
|  | { | ||
|  | 	b2Body* bA = m_bodyA; | ||
|  | 	b2Body* bB = m_bodyB; | ||
|  | 
 | ||
|  | 	b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter); | ||
|  | 	b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter); | ||
|  | 	b2Vec2 p1 = bA->m_sweep.c + rA; | ||
|  | 	b2Vec2 p2 = bB->m_sweep.c + rB; | ||
|  | 	b2Vec2 d = p2 - p1; | ||
|  | 	b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA); | ||
|  | 
 | ||
|  | 	b2Vec2 vA = bA->m_linearVelocity; | ||
|  | 	b2Vec2 vB = bB->m_linearVelocity; | ||
|  | 	float32 wA = bA->m_angularVelocity; | ||
|  | 	float32 wB = bB->m_angularVelocity; | ||
|  | 
 | ||
|  | 	float32 speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA)); | ||
|  | 	return speed; | ||
|  | } | ||
|  | 
 | ||
|  | bool b2PrismaticJoint::IsLimitEnabled() const | ||
|  | { | ||
|  | 	return m_enableLimit; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PrismaticJoint::EnableLimit(bool flag) | ||
|  | { | ||
|  | 	if (flag != m_enableLimit) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_enableLimit = flag; | ||
|  | 		m_impulse.z = 0.0f; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2PrismaticJoint::GetLowerLimit() const | ||
|  | { | ||
|  | 	return m_lowerTranslation; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2PrismaticJoint::GetUpperLimit() const | ||
|  | { | ||
|  | 	return m_upperTranslation; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PrismaticJoint::SetLimits(float32 lower, float32 upper) | ||
|  | { | ||
|  | 	b2Assert(lower <= upper); | ||
|  | 	if (lower != m_lowerTranslation || upper != m_upperTranslation) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_lowerTranslation = lower; | ||
|  | 		m_upperTranslation = upper; | ||
|  | 		m_impulse.z = 0.0f; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | bool b2PrismaticJoint::IsMotorEnabled() const | ||
|  | { | ||
|  | 	return m_enableMotor; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PrismaticJoint::EnableMotor(bool flag) | ||
|  | { | ||
|  | 	if (flag != m_enableMotor) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_enableMotor = flag; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2PrismaticJoint::SetMotorSpeed(float32 speed) | ||
|  | { | ||
|  | 	if (speed != m_motorSpeed) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_motorSpeed = speed; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2PrismaticJoint::SetMaxMotorForce(float32 force) | ||
|  | { | ||
|  | 	if (force != m_maxMotorForce) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_maxMotorForce = force; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2PrismaticJoint::GetMotorForce(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * m_motorImpulse; | ||
|  | } | ||
|  | 
 | ||
|  | void b2PrismaticJoint::Dump() | ||
|  | { | ||
|  | 	int32 indexA = m_bodyA->m_islandIndex; | ||
|  | 	int32 indexB = m_bodyB->m_islandIndex; | ||
|  | 
 | ||
|  | 	b2Log("  b2PrismaticJointDef jd;\n"); | ||
|  | 	b2Log("  jd.bodyA = bodies[%d];\n", indexA); | ||
|  | 	b2Log("  jd.bodyB = bodies[%d];\n", indexB); | ||
|  | 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected); | ||
|  | 	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | ||
|  | 	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | ||
|  | 	b2Log("  jd.localAxisA.Set(%.15lef, %.15lef);\n", m_localXAxisA.x, m_localXAxisA.y); | ||
|  | 	b2Log("  jd.referenceAngle = %.15lef;\n", m_referenceAngle); | ||
|  | 	b2Log("  jd.enableLimit = bool(%d);\n", m_enableLimit); | ||
|  | 	b2Log("  jd.lowerTranslation = %.15lef;\n", m_lowerTranslation); | ||
|  | 	b2Log("  jd.upperTranslation = %.15lef;\n", m_upperTranslation); | ||
|  | 	b2Log("  jd.enableMotor = bool(%d);\n", m_enableMotor); | ||
|  | 	b2Log("  jd.motorSpeed = %.15lef;\n", m_motorSpeed); | ||
|  | 	b2Log("  jd.maxMotorForce = %.15lef;\n", m_maxMotorForce); | ||
|  | 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | ||
|  | } |