512 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			512 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "Box2D/Dynamics/Joints/b2RevoluteJoint.h"
 | ||
|  | #include "Box2D/Dynamics/b2Body.h"
 | ||
|  | #include "Box2D/Dynamics/b2TimeStep.h"
 | ||
|  | 
 | ||
|  | // Point-to-point constraint
 | ||
|  | // C = p2 - p1
 | ||
|  | // Cdot = v2 - v1
 | ||
|  | //      = v2 + cross(w2, r2) - v1 - cross(w1, r1)
 | ||
|  | // J = [-I -r1_skew I r2_skew ]
 | ||
|  | // Identity used:
 | ||
|  | // w k % (rx i + ry j) = w * (-ry i + rx j)
 | ||
|  | 
 | ||
|  | // Motor constraint
 | ||
|  | // Cdot = w2 - w1
 | ||
|  | // J = [0 0 -1 0 0 1]
 | ||
|  | // K = invI1 + invI2
 | ||
|  | 
 | ||
|  | void b2RevoluteJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor) | ||
|  | { | ||
|  | 	bodyA = bA; | ||
|  | 	bodyB = bB; | ||
|  | 	localAnchorA = bodyA->GetLocalPoint(anchor); | ||
|  | 	localAnchorB = bodyB->GetLocalPoint(anchor); | ||
|  | 	referenceAngle = bodyB->GetAngle() - bodyA->GetAngle(); | ||
|  | } | ||
|  | 
 | ||
|  | b2RevoluteJoint::b2RevoluteJoint(const b2RevoluteJointDef* def) | ||
|  | : b2Joint(def) | ||
|  | { | ||
|  | 	m_localAnchorA = def->localAnchorA; | ||
|  | 	m_localAnchorB = def->localAnchorB; | ||
|  | 	m_referenceAngle = def->referenceAngle; | ||
|  | 
 | ||
|  | 	m_impulse.SetZero(); | ||
|  | 	m_motorImpulse = 0.0f; | ||
|  | 
 | ||
|  | 	m_lowerAngle = def->lowerAngle; | ||
|  | 	m_upperAngle = def->upperAngle; | ||
|  | 	m_maxMotorTorque = def->maxMotorTorque; | ||
|  | 	m_motorSpeed = def->motorSpeed; | ||
|  | 	m_enableLimit = def->enableLimit; | ||
|  | 	m_enableMotor = def->enableMotor; | ||
|  | 	m_limitState = e_inactiveLimit; | ||
|  | } | ||
|  | 
 | ||
|  | void b2RevoluteJoint::InitVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	m_indexA = m_bodyA->m_islandIndex; | ||
|  | 	m_indexB = m_bodyB->m_islandIndex; | ||
|  | 	m_localCenterA = m_bodyA->m_sweep.localCenter; | ||
|  | 	m_localCenterB = m_bodyB->m_sweep.localCenter; | ||
|  | 	m_invMassA = m_bodyA->m_invMass; | ||
|  | 	m_invMassB = m_bodyB->m_invMass; | ||
|  | 	m_invIA = m_bodyA->m_invI; | ||
|  | 	m_invIB = m_bodyB->m_invI; | ||
|  | 
 | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 
 | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 	m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 
 | ||
|  | 	// J = [-I -r1_skew I r2_skew]
 | ||
|  | 	//     [ 0       -1 0       1]
 | ||
|  | 	// r_skew = [-ry; rx]
 | ||
|  | 
 | ||
|  | 	// Matlab
 | ||
|  | 	// K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
 | ||
|  | 	//     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
 | ||
|  | 	//     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]
 | ||
|  | 
 | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	bool fixedRotation = (iA + iB == 0.0f); | ||
|  | 
 | ||
|  | 	m_mass.ex.x = mA + mB + m_rA.y * m_rA.y * iA + m_rB.y * m_rB.y * iB; | ||
|  | 	m_mass.ey.x = -m_rA.y * m_rA.x * iA - m_rB.y * m_rB.x * iB; | ||
|  | 	m_mass.ez.x = -m_rA.y * iA - m_rB.y * iB; | ||
|  | 	m_mass.ex.y = m_mass.ey.x; | ||
|  | 	m_mass.ey.y = mA + mB + m_rA.x * m_rA.x * iA + m_rB.x * m_rB.x * iB; | ||
|  | 	m_mass.ez.y = m_rA.x * iA + m_rB.x * iB; | ||
|  | 	m_mass.ex.z = m_mass.ez.x; | ||
|  | 	m_mass.ey.z = m_mass.ez.y; | ||
|  | 	m_mass.ez.z = iA + iB; | ||
|  | 
 | ||
|  | 	m_motorMass = iA + iB; | ||
|  | 	if (m_motorMass > 0.0f) | ||
|  | 	{ | ||
|  | 		m_motorMass = 1.0f / m_motorMass; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (m_enableMotor == false || fixedRotation) | ||
|  | 	{ | ||
|  | 		m_motorImpulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (m_enableLimit && fixedRotation == false) | ||
|  | 	{ | ||
|  | 		float32 jointAngle = aB - aA - m_referenceAngle; | ||
|  | 		if (b2Abs(m_upperAngle - m_lowerAngle) < 2.0f * b2_angularSlop) | ||
|  | 		{ | ||
|  | 			m_limitState = e_equalLimits; | ||
|  | 		} | ||
|  | 		else if (jointAngle <= m_lowerAngle) | ||
|  | 		{ | ||
|  | 			if (m_limitState != e_atLowerLimit) | ||
|  | 			{ | ||
|  | 				m_impulse.z = 0.0f; | ||
|  | 			} | ||
|  | 			m_limitState = e_atLowerLimit; | ||
|  | 		} | ||
|  | 		else if (jointAngle >= m_upperAngle) | ||
|  | 		{ | ||
|  | 			if (m_limitState != e_atUpperLimit) | ||
|  | 			{ | ||
|  | 				m_impulse.z = 0.0f; | ||
|  | 			} | ||
|  | 			m_limitState = e_atUpperLimit; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			m_limitState = e_inactiveLimit; | ||
|  | 			m_impulse.z = 0.0f; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_limitState = e_inactiveLimit; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (data.step.warmStarting) | ||
|  | 	{ | ||
|  | 		// Scale impulses to support a variable time step.
 | ||
|  | 		m_impulse *= data.step.dtRatio; | ||
|  | 		m_motorImpulse *= data.step.dtRatio; | ||
|  | 
 | ||
|  | 		b2Vec2 P(m_impulse.x, m_impulse.y); | ||
|  | 
 | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * (b2Cross(m_rA, P) + m_motorImpulse + m_impulse.z); | ||
|  | 
 | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * (b2Cross(m_rB, P) + m_motorImpulse + m_impulse.z); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_impulse.SetZero(); | ||
|  | 		m_motorImpulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | void b2RevoluteJoint::SolveVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	bool fixedRotation = (iA + iB == 0.0f); | ||
|  | 
 | ||
|  | 	// Solve motor constraint.
 | ||
|  | 	if (m_enableMotor && m_limitState != e_equalLimits && fixedRotation == false) | ||
|  | 	{ | ||
|  | 		float32 Cdot = wB - wA - m_motorSpeed; | ||
|  | 		float32 impulse = -m_motorMass * Cdot; | ||
|  | 		float32 oldImpulse = m_motorImpulse; | ||
|  | 		float32 maxImpulse = data.step.dt * m_maxMotorTorque; | ||
|  | 		m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); | ||
|  | 		impulse = m_motorImpulse - oldImpulse; | ||
|  | 
 | ||
|  | 		wA -= iA * impulse; | ||
|  | 		wB += iB * impulse; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Solve limit constraint.
 | ||
|  | 	if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) | ||
|  | 	{ | ||
|  | 		b2Vec2 Cdot1 = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); | ||
|  | 		float32 Cdot2 = wB - wA; | ||
|  | 		b2Vec3 Cdot(Cdot1.x, Cdot1.y, Cdot2); | ||
|  | 
 | ||
|  | 		b2Vec3 impulse = -m_mass.Solve33(Cdot); | ||
|  | 
 | ||
|  | 		if (m_limitState == e_equalLimits) | ||
|  | 		{ | ||
|  | 			m_impulse += impulse; | ||
|  | 		} | ||
|  | 		else if (m_limitState == e_atLowerLimit) | ||
|  | 		{ | ||
|  | 			float32 newImpulse = m_impulse.z + impulse.z; | ||
|  | 			if (newImpulse < 0.0f) | ||
|  | 			{ | ||
|  | 				b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); | ||
|  | 				b2Vec2 reduced = m_mass.Solve22(rhs); | ||
|  | 				impulse.x = reduced.x; | ||
|  | 				impulse.y = reduced.y; | ||
|  | 				impulse.z = -m_impulse.z; | ||
|  | 				m_impulse.x += reduced.x; | ||
|  | 				m_impulse.y += reduced.y; | ||
|  | 				m_impulse.z = 0.0f; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				m_impulse += impulse; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else if (m_limitState == e_atUpperLimit) | ||
|  | 		{ | ||
|  | 			float32 newImpulse = m_impulse.z + impulse.z; | ||
|  | 			if (newImpulse > 0.0f) | ||
|  | 			{ | ||
|  | 				b2Vec2 rhs = -Cdot1 + m_impulse.z * b2Vec2(m_mass.ez.x, m_mass.ez.y); | ||
|  | 				b2Vec2 reduced = m_mass.Solve22(rhs); | ||
|  | 				impulse.x = reduced.x; | ||
|  | 				impulse.y = reduced.y; | ||
|  | 				impulse.z = -m_impulse.z; | ||
|  | 				m_impulse.x += reduced.x; | ||
|  | 				m_impulse.y += reduced.y; | ||
|  | 				m_impulse.z = 0.0f; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				m_impulse += impulse; | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		b2Vec2 P(impulse.x, impulse.y); | ||
|  | 
 | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * (b2Cross(m_rA, P) + impulse.z); | ||
|  | 
 | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * (b2Cross(m_rB, P) + impulse.z); | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		// Solve point-to-point constraint
 | ||
|  | 		b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA); | ||
|  | 		b2Vec2 impulse = m_mass.Solve22(-Cdot); | ||
|  | 
 | ||
|  | 		m_impulse.x += impulse.x; | ||
|  | 		m_impulse.y += impulse.y; | ||
|  | 
 | ||
|  | 		vA -= mA * impulse; | ||
|  | 		wA -= iA * b2Cross(m_rA, impulse); | ||
|  | 
 | ||
|  | 		vB += mB * impulse; | ||
|  | 		wB += iB * b2Cross(m_rB, impulse); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | bool b2RevoluteJoint::SolvePositionConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	b2Vec2 cA = data.positions[m_indexA].c; | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 cB = data.positions[m_indexB].c; | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	float32 angularError = 0.0f; | ||
|  | 	float32 positionError = 0.0f; | ||
|  | 
 | ||
|  | 	bool fixedRotation = (m_invIA + m_invIB == 0.0f); | ||
|  | 
 | ||
|  | 	// Solve angular limit constraint.
 | ||
|  | 	if (m_enableLimit && m_limitState != e_inactiveLimit && fixedRotation == false) | ||
|  | 	{ | ||
|  | 		float32 angle = aB - aA - m_referenceAngle; | ||
|  | 		float32 limitImpulse = 0.0f; | ||
|  | 
 | ||
|  | 		if (m_limitState == e_equalLimits) | ||
|  | 		{ | ||
|  | 			// Prevent large angular corrections
 | ||
|  | 			float32 C = b2Clamp(angle - m_lowerAngle, -b2_maxAngularCorrection, b2_maxAngularCorrection); | ||
|  | 			limitImpulse = -m_motorMass * C; | ||
|  | 			angularError = b2Abs(C); | ||
|  | 		} | ||
|  | 		else if (m_limitState == e_atLowerLimit) | ||
|  | 		{ | ||
|  | 			float32 C = angle - m_lowerAngle; | ||
|  | 			angularError = -C; | ||
|  | 
 | ||
|  | 			// Prevent large angular corrections and allow some slop.
 | ||
|  | 			C = b2Clamp(C + b2_angularSlop, -b2_maxAngularCorrection, 0.0f); | ||
|  | 			limitImpulse = -m_motorMass * C; | ||
|  | 		} | ||
|  | 		else if (m_limitState == e_atUpperLimit) | ||
|  | 		{ | ||
|  | 			float32 C = angle - m_upperAngle; | ||
|  | 			angularError = C; | ||
|  | 
 | ||
|  | 			// Prevent large angular corrections and allow some slop.
 | ||
|  | 			C = b2Clamp(C - b2_angularSlop, 0.0f, b2_maxAngularCorrection); | ||
|  | 			limitImpulse = -m_motorMass * C; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		aA -= m_invIA * limitImpulse; | ||
|  | 		aB += m_invIB * limitImpulse; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Solve point-to-point constraint.
 | ||
|  | 	{ | ||
|  | 		qA.Set(aA); | ||
|  | 		qB.Set(aB); | ||
|  | 		b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 		b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 
 | ||
|  | 		b2Vec2 C = cB + rB - cA - rA; | ||
|  | 		positionError = C.Length(); | ||
|  | 
 | ||
|  | 		float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 		float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 		b2Mat22 K; | ||
|  | 		K.ex.x = mA + mB + iA * rA.y * rA.y + iB * rB.y * rB.y; | ||
|  | 		K.ex.y = -iA * rA.x * rA.y - iB * rB.x * rB.y; | ||
|  | 		K.ey.x = K.ex.y; | ||
|  | 		K.ey.y = mA + mB + iA * rA.x * rA.x + iB * rB.x * rB.x; | ||
|  | 
 | ||
|  | 		b2Vec2 impulse = -K.Solve(C); | ||
|  | 
 | ||
|  | 		cA -= mA * impulse; | ||
|  | 		aA -= iA * b2Cross(rA, impulse); | ||
|  | 
 | ||
|  | 		cB += mB * impulse; | ||
|  | 		aB += iB * b2Cross(rB, impulse); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.positions[m_indexA].c = cA; | ||
|  | 	data.positions[m_indexA].a = aA; | ||
|  | 	data.positions[m_indexB].c = cB; | ||
|  | 	data.positions[m_indexB].a = aB; | ||
|  | 	 | ||
|  | 	return positionError <= b2_linearSlop && angularError <= b2_angularSlop; | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2RevoluteJoint::GetAnchorA() const | ||
|  | { | ||
|  | 	return m_bodyA->GetWorldPoint(m_localAnchorA); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2RevoluteJoint::GetAnchorB() const | ||
|  | { | ||
|  | 	return m_bodyB->GetWorldPoint(m_localAnchorB); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2RevoluteJoint::GetReactionForce(float32 inv_dt) const | ||
|  | { | ||
|  | 	b2Vec2 P(m_impulse.x, m_impulse.y); | ||
|  | 	return inv_dt * P; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2RevoluteJoint::GetReactionTorque(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * m_impulse.z; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2RevoluteJoint::GetJointAngle() const | ||
|  | { | ||
|  | 	b2Body* bA = m_bodyA; | ||
|  | 	b2Body* bB = m_bodyB; | ||
|  | 	return bB->m_sweep.a - bA->m_sweep.a - m_referenceAngle; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2RevoluteJoint::GetJointSpeed() const | ||
|  | { | ||
|  | 	b2Body* bA = m_bodyA; | ||
|  | 	b2Body* bB = m_bodyB; | ||
|  | 	return bB->m_angularVelocity - bA->m_angularVelocity; | ||
|  | } | ||
|  | 
 | ||
|  | bool b2RevoluteJoint::IsMotorEnabled() const | ||
|  | { | ||
|  | 	return m_enableMotor; | ||
|  | } | ||
|  | 
 | ||
|  | void b2RevoluteJoint::EnableMotor(bool flag) | ||
|  | { | ||
|  | 	if (flag != m_enableMotor) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_enableMotor = flag; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2RevoluteJoint::GetMotorTorque(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * m_motorImpulse; | ||
|  | } | ||
|  | 
 | ||
|  | void b2RevoluteJoint::SetMotorSpeed(float32 speed) | ||
|  | { | ||
|  | 	if (speed != m_motorSpeed) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_motorSpeed = speed; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2RevoluteJoint::SetMaxMotorTorque(float32 torque) | ||
|  | { | ||
|  | 	if (torque != m_maxMotorTorque) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_maxMotorTorque = torque; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | bool b2RevoluteJoint::IsLimitEnabled() const | ||
|  | { | ||
|  | 	return m_enableLimit; | ||
|  | } | ||
|  | 
 | ||
|  | void b2RevoluteJoint::EnableLimit(bool flag) | ||
|  | { | ||
|  | 	if (flag != m_enableLimit) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_enableLimit = flag; | ||
|  | 		m_impulse.z = 0.0f; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2RevoluteJoint::GetLowerLimit() const | ||
|  | { | ||
|  | 	return m_lowerAngle; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2RevoluteJoint::GetUpperLimit() const | ||
|  | { | ||
|  | 	return m_upperAngle; | ||
|  | } | ||
|  | 
 | ||
|  | void b2RevoluteJoint::SetLimits(float32 lower, float32 upper) | ||
|  | { | ||
|  | 	b2Assert(lower <= upper); | ||
|  | 	 | ||
|  | 	if (lower != m_lowerAngle || upper != m_upperAngle) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_impulse.z = 0.0f; | ||
|  | 		m_lowerAngle = lower; | ||
|  | 		m_upperAngle = upper; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2RevoluteJoint::Dump() | ||
|  | { | ||
|  | 	int32 indexA = m_bodyA->m_islandIndex; | ||
|  | 	int32 indexB = m_bodyB->m_islandIndex; | ||
|  | 
 | ||
|  | 	b2Log("  b2RevoluteJointDef jd;\n"); | ||
|  | 	b2Log("  jd.bodyA = bodies[%d];\n", indexA); | ||
|  | 	b2Log("  jd.bodyB = bodies[%d];\n", indexB); | ||
|  | 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected); | ||
|  | 	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | ||
|  | 	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | ||
|  | 	b2Log("  jd.referenceAngle = %.15lef;\n", m_referenceAngle); | ||
|  | 	b2Log("  jd.enableLimit = bool(%d);\n", m_enableLimit); | ||
|  | 	b2Log("  jd.lowerAngle = %.15lef;\n", m_lowerAngle); | ||
|  | 	b2Log("  jd.upperAngle = %.15lef;\n", m_upperAngle); | ||
|  | 	b2Log("  jd.enableMotor = bool(%d);\n", m_enableMotor); | ||
|  | 	b2Log("  jd.motorSpeed = %.15lef;\n", m_motorSpeed); | ||
|  | 	b2Log("  jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque); | ||
|  | 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | ||
|  | } |