457 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			457 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2006-2007 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "Box2D/Dynamics/Joints/b2WheelJoint.h"
 | ||
|  | #include "Box2D/Dynamics/b2Body.h"
 | ||
|  | #include "Box2D/Dynamics/b2TimeStep.h"
 | ||
|  | 
 | ||
|  | // Linear constraint (point-to-line)
 | ||
|  | // d = pB - pA = xB + rB - xA - rA
 | ||
|  | // C = dot(ay, d)
 | ||
|  | // Cdot = dot(d, cross(wA, ay)) + dot(ay, vB + cross(wB, rB) - vA - cross(wA, rA))
 | ||
|  | //      = -dot(ay, vA) - dot(cross(d + rA, ay), wA) + dot(ay, vB) + dot(cross(rB, ay), vB)
 | ||
|  | // J = [-ay, -cross(d + rA, ay), ay, cross(rB, ay)]
 | ||
|  | 
 | ||
|  | // Spring linear constraint
 | ||
|  | // C = dot(ax, d)
 | ||
|  | // Cdot = = -dot(ax, vA) - dot(cross(d + rA, ax), wA) + dot(ax, vB) + dot(cross(rB, ax), vB)
 | ||
|  | // J = [-ax -cross(d+rA, ax) ax cross(rB, ax)]
 | ||
|  | 
 | ||
|  | // Motor rotational constraint
 | ||
|  | // Cdot = wB - wA
 | ||
|  | // J = [0 0 -1 0 0 1]
 | ||
|  | 
 | ||
|  | void b2WheelJointDef::Initialize(b2Body* bA, b2Body* bB, const b2Vec2& anchor, const b2Vec2& axis) | ||
|  | { | ||
|  | 	bodyA = bA; | ||
|  | 	bodyB = bB; | ||
|  | 	localAnchorA = bodyA->GetLocalPoint(anchor); | ||
|  | 	localAnchorB = bodyB->GetLocalPoint(anchor); | ||
|  | 	localAxisA = bodyA->GetLocalVector(axis); | ||
|  | } | ||
|  | 
 | ||
|  | b2WheelJoint::b2WheelJoint(const b2WheelJointDef* def) | ||
|  | : b2Joint(def) | ||
|  | { | ||
|  | 	m_localAnchorA = def->localAnchorA; | ||
|  | 	m_localAnchorB = def->localAnchorB; | ||
|  | 	m_localXAxisA = def->localAxisA; | ||
|  | 	m_localYAxisA = b2Cross(1.0f, m_localXAxisA); | ||
|  | 
 | ||
|  | 	m_mass = 0.0f; | ||
|  | 	m_impulse = 0.0f; | ||
|  | 	m_motorMass = 0.0f; | ||
|  | 	m_motorImpulse = 0.0f; | ||
|  | 	m_springMass = 0.0f; | ||
|  | 	m_springImpulse = 0.0f; | ||
|  | 
 | ||
|  | 	m_maxMotorTorque = def->maxMotorTorque; | ||
|  | 	m_motorSpeed = def->motorSpeed; | ||
|  | 	m_enableMotor = def->enableMotor; | ||
|  | 
 | ||
|  | 	m_frequencyHz = def->frequencyHz; | ||
|  | 	m_dampingRatio = def->dampingRatio; | ||
|  | 
 | ||
|  | 	m_bias = 0.0f; | ||
|  | 	m_gamma = 0.0f; | ||
|  | 
 | ||
|  | 	m_ax.SetZero(); | ||
|  | 	m_ay.SetZero(); | ||
|  | } | ||
|  | 
 | ||
|  | void b2WheelJoint::InitVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	m_indexA = m_bodyA->m_islandIndex; | ||
|  | 	m_indexB = m_bodyB->m_islandIndex; | ||
|  | 	m_localCenterA = m_bodyA->m_sweep.localCenter; | ||
|  | 	m_localCenterB = m_bodyB->m_sweep.localCenter; | ||
|  | 	m_invMassA = m_bodyA->m_invMass; | ||
|  | 	m_invMassB = m_bodyB->m_invMass; | ||
|  | 	m_invIA = m_bodyA->m_invI; | ||
|  | 	m_invIB = m_bodyB->m_invI; | ||
|  | 
 | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	b2Vec2 cA = data.positions[m_indexA].c; | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 
 | ||
|  | 	b2Vec2 cB = data.positions[m_indexB].c; | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	// Compute the effective masses.
 | ||
|  | 	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 	b2Vec2 d = cB + rB - cA - rA; | ||
|  | 
 | ||
|  | 	// Point to line constraint
 | ||
|  | 	{ | ||
|  | 		m_ay = b2Mul(qA, m_localYAxisA); | ||
|  | 		m_sAy = b2Cross(d + rA, m_ay); | ||
|  | 		m_sBy = b2Cross(rB, m_ay); | ||
|  | 
 | ||
|  | 		m_mass = mA + mB + iA * m_sAy * m_sAy + iB * m_sBy * m_sBy; | ||
|  | 
 | ||
|  | 		if (m_mass > 0.0f) | ||
|  | 		{ | ||
|  | 			m_mass = 1.0f / m_mass; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Spring constraint
 | ||
|  | 	m_springMass = 0.0f; | ||
|  | 	m_bias = 0.0f; | ||
|  | 	m_gamma = 0.0f; | ||
|  | 	if (m_frequencyHz > 0.0f) | ||
|  | 	{ | ||
|  | 		m_ax = b2Mul(qA, m_localXAxisA); | ||
|  | 		m_sAx = b2Cross(d + rA, m_ax); | ||
|  | 		m_sBx = b2Cross(rB, m_ax); | ||
|  | 
 | ||
|  | 		float32 invMass = mA + mB + iA * m_sAx * m_sAx + iB * m_sBx * m_sBx; | ||
|  | 
 | ||
|  | 		if (invMass > 0.0f) | ||
|  | 		{ | ||
|  | 			m_springMass = 1.0f / invMass; | ||
|  | 
 | ||
|  | 			float32 C = b2Dot(d, m_ax); | ||
|  | 
 | ||
|  | 			// Frequency
 | ||
|  | 			float32 omega = 2.0f * b2_pi * m_frequencyHz; | ||
|  | 
 | ||
|  | 			// Damping coefficient
 | ||
|  | 			float32 damp = 2.0f * m_springMass * m_dampingRatio * omega; | ||
|  | 
 | ||
|  | 			// Spring stiffness
 | ||
|  | 			float32 k = m_springMass * omega * omega; | ||
|  | 
 | ||
|  | 			// magic formulas
 | ||
|  | 			float32 h = data.step.dt; | ||
|  | 			m_gamma = h * (damp + h * k); | ||
|  | 			if (m_gamma > 0.0f) | ||
|  | 			{ | ||
|  | 				m_gamma = 1.0f / m_gamma; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			m_bias = C * h * k * m_gamma; | ||
|  | 
 | ||
|  | 			m_springMass = invMass + m_gamma; | ||
|  | 			if (m_springMass > 0.0f) | ||
|  | 			{ | ||
|  | 				m_springMass = 1.0f / m_springMass; | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_springImpulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Rotational motor
 | ||
|  | 	if (m_enableMotor) | ||
|  | 	{ | ||
|  | 		m_motorMass = iA + iB; | ||
|  | 		if (m_motorMass > 0.0f) | ||
|  | 		{ | ||
|  | 			m_motorMass = 1.0f / m_motorMass; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_motorMass = 0.0f; | ||
|  | 		m_motorImpulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (data.step.warmStarting) | ||
|  | 	{ | ||
|  | 		// Account for variable time step.
 | ||
|  | 		m_impulse *= data.step.dtRatio; | ||
|  | 		m_springImpulse *= data.step.dtRatio; | ||
|  | 		m_motorImpulse *= data.step.dtRatio; | ||
|  | 
 | ||
|  | 		b2Vec2 P = m_impulse * m_ay + m_springImpulse * m_ax; | ||
|  | 		float32 LA = m_impulse * m_sAy + m_springImpulse * m_sAx + m_motorImpulse; | ||
|  | 		float32 LB = m_impulse * m_sBy + m_springImpulse * m_sBx + m_motorImpulse; | ||
|  | 
 | ||
|  | 		vA -= m_invMassA * P; | ||
|  | 		wA -= m_invIA * LA; | ||
|  | 
 | ||
|  | 		vB += m_invMassB * P; | ||
|  | 		wB += m_invIB * LB; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_impulse = 0.0f; | ||
|  | 		m_springImpulse = 0.0f; | ||
|  | 		m_motorImpulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | void b2WheelJoint::SolveVelocityConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	float32 mA = m_invMassA, mB = m_invMassB; | ||
|  | 	float32 iA = m_invIA, iB = m_invIB; | ||
|  | 
 | ||
|  | 	b2Vec2 vA = data.velocities[m_indexA].v; | ||
|  | 	float32 wA = data.velocities[m_indexA].w; | ||
|  | 	b2Vec2 vB = data.velocities[m_indexB].v; | ||
|  | 	float32 wB = data.velocities[m_indexB].w; | ||
|  | 
 | ||
|  | 	// Solve spring constraint
 | ||
|  | 	{ | ||
|  | 		float32 Cdot = b2Dot(m_ax, vB - vA) + m_sBx * wB - m_sAx * wA; | ||
|  | 		float32 impulse = -m_springMass * (Cdot + m_bias + m_gamma * m_springImpulse); | ||
|  | 		m_springImpulse += impulse; | ||
|  | 
 | ||
|  | 		b2Vec2 P = impulse * m_ax; | ||
|  | 		float32 LA = impulse * m_sAx; | ||
|  | 		float32 LB = impulse * m_sBx; | ||
|  | 
 | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * LA; | ||
|  | 
 | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * LB; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Solve rotational motor constraint
 | ||
|  | 	{ | ||
|  | 		float32 Cdot = wB - wA - m_motorSpeed; | ||
|  | 		float32 impulse = -m_motorMass * Cdot; | ||
|  | 
 | ||
|  | 		float32 oldImpulse = m_motorImpulse; | ||
|  | 		float32 maxImpulse = data.step.dt * m_maxMotorTorque; | ||
|  | 		m_motorImpulse = b2Clamp(m_motorImpulse + impulse, -maxImpulse, maxImpulse); | ||
|  | 		impulse = m_motorImpulse - oldImpulse; | ||
|  | 
 | ||
|  | 		wA -= iA * impulse; | ||
|  | 		wB += iB * impulse; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Solve point to line constraint
 | ||
|  | 	{ | ||
|  | 		float32 Cdot = b2Dot(m_ay, vB - vA) + m_sBy * wB - m_sAy * wA; | ||
|  | 		float32 impulse = -m_mass * Cdot; | ||
|  | 		m_impulse += impulse; | ||
|  | 
 | ||
|  | 		b2Vec2 P = impulse * m_ay; | ||
|  | 		float32 LA = impulse * m_sAy; | ||
|  | 		float32 LB = impulse * m_sBy; | ||
|  | 
 | ||
|  | 		vA -= mA * P; | ||
|  | 		wA -= iA * LA; | ||
|  | 
 | ||
|  | 		vB += mB * P; | ||
|  | 		wB += iB * LB; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	data.velocities[m_indexA].v = vA; | ||
|  | 	data.velocities[m_indexA].w = wA; | ||
|  | 	data.velocities[m_indexB].v = vB; | ||
|  | 	data.velocities[m_indexB].w = wB; | ||
|  | } | ||
|  | 
 | ||
|  | bool b2WheelJoint::SolvePositionConstraints(const b2SolverData& data) | ||
|  | { | ||
|  | 	b2Vec2 cA = data.positions[m_indexA].c; | ||
|  | 	float32 aA = data.positions[m_indexA].a; | ||
|  | 	b2Vec2 cB = data.positions[m_indexB].c; | ||
|  | 	float32 aB = data.positions[m_indexB].a; | ||
|  | 
 | ||
|  | 	b2Rot qA(aA), qB(aB); | ||
|  | 
 | ||
|  | 	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA); | ||
|  | 	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB); | ||
|  | 	b2Vec2 d = (cB - cA) + rB - rA; | ||
|  | 
 | ||
|  | 	b2Vec2 ay = b2Mul(qA, m_localYAxisA); | ||
|  | 
 | ||
|  | 	float32 sAy = b2Cross(d + rA, ay); | ||
|  | 	float32 sBy = b2Cross(rB, ay); | ||
|  | 
 | ||
|  | 	float32 C = b2Dot(d, ay); | ||
|  | 
 | ||
|  | 	float32 k = m_invMassA + m_invMassB + m_invIA * m_sAy * m_sAy + m_invIB * m_sBy * m_sBy; | ||
|  | 
 | ||
|  | 	float32 impulse; | ||
|  | 	if (k != 0.0f) | ||
|  | 	{ | ||
|  | 		impulse = - C / k; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		impulse = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Vec2 P = impulse * ay; | ||
|  | 	float32 LA = impulse * sAy; | ||
|  | 	float32 LB = impulse * sBy; | ||
|  | 
 | ||
|  | 	cA -= m_invMassA * P; | ||
|  | 	aA -= m_invIA * LA; | ||
|  | 	cB += m_invMassB * P; | ||
|  | 	aB += m_invIB * LB; | ||
|  | 
 | ||
|  | 	data.positions[m_indexA].c = cA; | ||
|  | 	data.positions[m_indexA].a = aA; | ||
|  | 	data.positions[m_indexB].c = cB; | ||
|  | 	data.positions[m_indexB].a = aB; | ||
|  | 
 | ||
|  | 	return b2Abs(C) <= b2_linearSlop; | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2WheelJoint::GetAnchorA() const | ||
|  | { | ||
|  | 	return m_bodyA->GetWorldPoint(m_localAnchorA); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2WheelJoint::GetAnchorB() const | ||
|  | { | ||
|  | 	return m_bodyB->GetWorldPoint(m_localAnchorB); | ||
|  | } | ||
|  | 
 | ||
|  | b2Vec2 b2WheelJoint::GetReactionForce(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * (m_impulse * m_ay + m_springImpulse * m_ax); | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2WheelJoint::GetReactionTorque(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * m_motorImpulse; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2WheelJoint::GetJointTranslation() const | ||
|  | { | ||
|  | 	b2Body* bA = m_bodyA; | ||
|  | 	b2Body* bB = m_bodyB; | ||
|  | 
 | ||
|  | 	b2Vec2 pA = bA->GetWorldPoint(m_localAnchorA); | ||
|  | 	b2Vec2 pB = bB->GetWorldPoint(m_localAnchorB); | ||
|  | 	b2Vec2 d = pB - pA; | ||
|  | 	b2Vec2 axis = bA->GetWorldVector(m_localXAxisA); | ||
|  | 
 | ||
|  | 	float32 translation = b2Dot(d, axis); | ||
|  | 	return translation; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2WheelJoint::GetJointLinearSpeed() const | ||
|  | { | ||
|  | 	b2Body* bA = m_bodyA; | ||
|  | 	b2Body* bB = m_bodyB; | ||
|  | 
 | ||
|  | 	b2Vec2 rA = b2Mul(bA->m_xf.q, m_localAnchorA - bA->m_sweep.localCenter); | ||
|  | 	b2Vec2 rB = b2Mul(bB->m_xf.q, m_localAnchorB - bB->m_sweep.localCenter); | ||
|  | 	b2Vec2 p1 = bA->m_sweep.c + rA; | ||
|  | 	b2Vec2 p2 = bB->m_sweep.c + rB; | ||
|  | 	b2Vec2 d = p2 - p1; | ||
|  | 	b2Vec2 axis = b2Mul(bA->m_xf.q, m_localXAxisA); | ||
|  | 
 | ||
|  | 	b2Vec2 vA = bA->m_linearVelocity; | ||
|  | 	b2Vec2 vB = bB->m_linearVelocity; | ||
|  | 	float32 wA = bA->m_angularVelocity; | ||
|  | 	float32 wB = bB->m_angularVelocity; | ||
|  | 
 | ||
|  | 	float32 speed = b2Dot(d, b2Cross(wA, axis)) + b2Dot(axis, vB + b2Cross(wB, rB) - vA - b2Cross(wA, rA)); | ||
|  | 	return speed; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2WheelJoint::GetJointAngle() const | ||
|  | { | ||
|  | 	b2Body* bA = m_bodyA; | ||
|  | 	b2Body* bB = m_bodyB; | ||
|  | 	return bB->m_sweep.a - bA->m_sweep.a; | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2WheelJoint::GetJointAngularSpeed() const | ||
|  | { | ||
|  | 	float32 wA = m_bodyA->m_angularVelocity; | ||
|  | 	float32 wB = m_bodyB->m_angularVelocity; | ||
|  | 	return wB - wA; | ||
|  | } | ||
|  | 
 | ||
|  | bool b2WheelJoint::IsMotorEnabled() const | ||
|  | { | ||
|  | 	return m_enableMotor; | ||
|  | } | ||
|  | 
 | ||
|  | void b2WheelJoint::EnableMotor(bool flag) | ||
|  | { | ||
|  | 	if (flag != m_enableMotor) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_enableMotor = flag; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2WheelJoint::SetMotorSpeed(float32 speed) | ||
|  | { | ||
|  | 	if (speed != m_motorSpeed) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_motorSpeed = speed; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | void b2WheelJoint::SetMaxMotorTorque(float32 torque) | ||
|  | { | ||
|  | 	if (torque != m_maxMotorTorque) | ||
|  | 	{ | ||
|  | 		m_bodyA->SetAwake(true); | ||
|  | 		m_bodyB->SetAwake(true); | ||
|  | 		m_maxMotorTorque = torque; | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | float32 b2WheelJoint::GetMotorTorque(float32 inv_dt) const | ||
|  | { | ||
|  | 	return inv_dt * m_motorImpulse; | ||
|  | } | ||
|  | 
 | ||
|  | void b2WheelJoint::Dump() | ||
|  | { | ||
|  | 	int32 indexA = m_bodyA->m_islandIndex; | ||
|  | 	int32 indexB = m_bodyB->m_islandIndex; | ||
|  | 
 | ||
|  | 	b2Log("  b2WheelJointDef jd;\n"); | ||
|  | 	b2Log("  jd.bodyA = bodies[%d];\n", indexA); | ||
|  | 	b2Log("  jd.bodyB = bodies[%d];\n", indexB); | ||
|  | 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected); | ||
|  | 	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y); | ||
|  | 	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y); | ||
|  | 	b2Log("  jd.localAxisA.Set(%.15lef, %.15lef);\n", m_localXAxisA.x, m_localXAxisA.y); | ||
|  | 	b2Log("  jd.enableMotor = bool(%d);\n", m_enableMotor); | ||
|  | 	b2Log("  jd.motorSpeed = %.15lef;\n", m_motorSpeed); | ||
|  | 	b2Log("  jd.maxMotorTorque = %.15lef;\n", m_maxMotorTorque); | ||
|  | 	b2Log("  jd.frequencyHz = %.15lef;\n", m_frequencyHz); | ||
|  | 	b2Log("  jd.dampingRatio = %.15lef;\n", m_dampingRatio); | ||
|  | 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index); | ||
|  | } |