708 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
		
		
			
		
	
	
			708 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #ifndef B2_MATH_H
 | ||
|  | #define B2_MATH_H
 | ||
|  | 
 | ||
|  | #include "Box2D/Common/b2Settings.h"
 | ||
|  | #include <math.h>
 | ||
|  | 
 | ||
|  | /// This function is used to ensure that a floating point number is not a NaN or infinity.
 | ||
|  | inline bool b2IsValid(float32 x) | ||
|  | { | ||
|  | 	return isfinite(x); | ||
|  | } | ||
|  | 
 | ||
|  | #define	b2Sqrt(x)	sqrtf(x)
 | ||
|  | #define	b2Atan2(y, x)	atan2f(y, x)
 | ||
|  | 
 | ||
|  | /// A 2D column vector.
 | ||
|  | struct b2Vec2 | ||
|  | { | ||
|  | 	/// Default constructor does nothing (for performance).
 | ||
|  | 	b2Vec2() {} | ||
|  | 
 | ||
|  | 	/// Construct using coordinates.
 | ||
|  | 	b2Vec2(float32 xIn, float32 yIn) : x(xIn), y(yIn) {} | ||
|  | 
 | ||
|  | 	/// Set this vector to all zeros.
 | ||
|  | 	void SetZero() { x = 0.0f; y = 0.0f; } | ||
|  | 
 | ||
|  | 	/// Set this vector to some specified coordinates.
 | ||
|  | 	void Set(float32 x_, float32 y_) { x = x_; y = y_; } | ||
|  | 
 | ||
|  | 	/// Negate this vector.
 | ||
|  | 	b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; } | ||
|  | 	 | ||
|  | 	/// Read from and indexed element.
 | ||
|  | 	float32 operator () (int32 i) const | ||
|  | 	{ | ||
|  | 		return (&x)[i]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Write to an indexed element.
 | ||
|  | 	float32& operator () (int32 i) | ||
|  | 	{ | ||
|  | 		return (&x)[i]; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Add a vector to this vector.
 | ||
|  | 	void operator += (const b2Vec2& v) | ||
|  | 	{ | ||
|  | 		x += v.x; y += v.y; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	/// Subtract a vector from this vector.
 | ||
|  | 	void operator -= (const b2Vec2& v) | ||
|  | 	{ | ||
|  | 		x -= v.x; y -= v.y; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Multiply this vector by a scalar.
 | ||
|  | 	void operator *= (float32 a) | ||
|  | 	{ | ||
|  | 		x *= a; y *= a; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Get the length of this vector (the norm).
 | ||
|  | 	float32 Length() const | ||
|  | 	{ | ||
|  | 		return b2Sqrt(x * x + y * y); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Get the length squared. For performance, use this instead of
 | ||
|  | 	/// b2Vec2::Length (if possible).
 | ||
|  | 	float32 LengthSquared() const | ||
|  | 	{ | ||
|  | 		return x * x + y * y; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Convert this vector into a unit vector. Returns the length.
 | ||
|  | 	float32 Normalize() | ||
|  | 	{ | ||
|  | 		float32 length = Length(); | ||
|  | 		if (length < b2_epsilon) | ||
|  | 		{ | ||
|  | 			return 0.0f; | ||
|  | 		} | ||
|  | 		float32 invLength = 1.0f / length; | ||
|  | 		x *= invLength; | ||
|  | 		y *= invLength; | ||
|  | 
 | ||
|  | 		return length; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Does this vector contain finite coordinates?
 | ||
|  | 	bool IsValid() const | ||
|  | 	{ | ||
|  | 		return b2IsValid(x) && b2IsValid(y); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Get the skew vector such that dot(skew_vec, other) == cross(vec, other)
 | ||
|  | 	b2Vec2 Skew() const | ||
|  | 	{ | ||
|  | 		return b2Vec2(-y, x); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	float32 x, y; | ||
|  | }; | ||
|  | 
 | ||
|  | /// A 2D column vector with 3 elements.
 | ||
|  | struct b2Vec3 | ||
|  | { | ||
|  | 	/// Default constructor does nothing (for performance).
 | ||
|  | 	b2Vec3() {} | ||
|  | 
 | ||
|  | 	/// Construct using coordinates.
 | ||
|  | 	b2Vec3(float32 xIn, float32 yIn, float32 zIn) : x(xIn), y(yIn), z(zIn) {} | ||
|  | 
 | ||
|  | 	/// Set this vector to all zeros.
 | ||
|  | 	void SetZero() { x = 0.0f; y = 0.0f; z = 0.0f; } | ||
|  | 
 | ||
|  | 	/// Set this vector to some specified coordinates.
 | ||
|  | 	void Set(float32 x_, float32 y_, float32 z_) { x = x_; y = y_; z = z_; } | ||
|  | 
 | ||
|  | 	/// Negate this vector.
 | ||
|  | 	b2Vec3 operator -() const { b2Vec3 v; v.Set(-x, -y, -z); return v; } | ||
|  | 
 | ||
|  | 	/// Add a vector to this vector.
 | ||
|  | 	void operator += (const b2Vec3& v) | ||
|  | 	{ | ||
|  | 		x += v.x; y += v.y; z += v.z; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Subtract a vector from this vector.
 | ||
|  | 	void operator -= (const b2Vec3& v) | ||
|  | 	{ | ||
|  | 		x -= v.x; y -= v.y; z -= v.z; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Multiply this vector by a scalar.
 | ||
|  | 	void operator *= (float32 s) | ||
|  | 	{ | ||
|  | 		x *= s; y *= s; z *= s; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	float32 x, y, z; | ||
|  | }; | ||
|  | 
 | ||
|  | /// A 2-by-2 matrix. Stored in column-major order.
 | ||
|  | struct b2Mat22 | ||
|  | { | ||
|  | 	/// The default constructor does nothing (for performance).
 | ||
|  | 	b2Mat22() {} | ||
|  | 
 | ||
|  | 	/// Construct this matrix using columns.
 | ||
|  | 	b2Mat22(const b2Vec2& c1, const b2Vec2& c2) | ||
|  | 	{ | ||
|  | 		ex = c1; | ||
|  | 		ey = c2; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Construct this matrix using scalars.
 | ||
|  | 	b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22) | ||
|  | 	{ | ||
|  | 		ex.x = a11; ex.y = a21; | ||
|  | 		ey.x = a12; ey.y = a22; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Initialize this matrix using columns.
 | ||
|  | 	void Set(const b2Vec2& c1, const b2Vec2& c2) | ||
|  | 	{ | ||
|  | 		ex = c1; | ||
|  | 		ey = c2; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Set this to the identity matrix.
 | ||
|  | 	void SetIdentity() | ||
|  | 	{ | ||
|  | 		ex.x = 1.0f; ey.x = 0.0f; | ||
|  | 		ex.y = 0.0f; ey.y = 1.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Set this matrix to all zeros.
 | ||
|  | 	void SetZero() | ||
|  | 	{ | ||
|  | 		ex.x = 0.0f; ey.x = 0.0f; | ||
|  | 		ex.y = 0.0f; ey.y = 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Mat22 GetInverse() const | ||
|  | 	{ | ||
|  | 		float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y; | ||
|  | 		b2Mat22 B; | ||
|  | 		float32 det = a * d - b * c; | ||
|  | 		if (det != 0.0f) | ||
|  | 		{ | ||
|  | 			det = 1.0f / det; | ||
|  | 		} | ||
|  | 		B.ex.x =  det * d;	B.ey.x = -det * b; | ||
|  | 		B.ex.y = -det * c;	B.ey.y =  det * a; | ||
|  | 		return B; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Solve A * x = b, where b is a column vector. This is more efficient
 | ||
|  | 	/// than computing the inverse in one-shot cases.
 | ||
|  | 	b2Vec2 Solve(const b2Vec2& b) const | ||
|  | 	{ | ||
|  | 		float32 a11 = ex.x, a12 = ey.x, a21 = ex.y, a22 = ey.y; | ||
|  | 		float32 det = a11 * a22 - a12 * a21; | ||
|  | 		if (det != 0.0f) | ||
|  | 		{ | ||
|  | 			det = 1.0f / det; | ||
|  | 		} | ||
|  | 		b2Vec2 x; | ||
|  | 		x.x = det * (a22 * b.x - a12 * b.y); | ||
|  | 		x.y = det * (a11 * b.y - a21 * b.x); | ||
|  | 		return x; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Vec2 ex, ey; | ||
|  | }; | ||
|  | 
 | ||
|  | /// A 3-by-3 matrix. Stored in column-major order.
 | ||
|  | struct b2Mat33 | ||
|  | { | ||
|  | 	/// The default constructor does nothing (for performance).
 | ||
|  | 	b2Mat33() {} | ||
|  | 
 | ||
|  | 	/// Construct this matrix using columns.
 | ||
|  | 	b2Mat33(const b2Vec3& c1, const b2Vec3& c2, const b2Vec3& c3) | ||
|  | 	{ | ||
|  | 		ex = c1; | ||
|  | 		ey = c2; | ||
|  | 		ez = c3; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Set this matrix to all zeros.
 | ||
|  | 	void SetZero() | ||
|  | 	{ | ||
|  | 		ex.SetZero(); | ||
|  | 		ey.SetZero(); | ||
|  | 		ez.SetZero(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Solve A * x = b, where b is a column vector. This is more efficient
 | ||
|  | 	/// than computing the inverse in one-shot cases.
 | ||
|  | 	b2Vec3 Solve33(const b2Vec3& b) const; | ||
|  | 
 | ||
|  | 	/// Solve A * x = b, where b is a column vector. This is more efficient
 | ||
|  | 	/// than computing the inverse in one-shot cases. Solve only the upper
 | ||
|  | 	/// 2-by-2 matrix equation.
 | ||
|  | 	b2Vec2 Solve22(const b2Vec2& b) const; | ||
|  | 
 | ||
|  | 	/// Get the inverse of this matrix as a 2-by-2.
 | ||
|  | 	/// Returns the zero matrix if singular.
 | ||
|  | 	void GetInverse22(b2Mat33* M) const; | ||
|  | 
 | ||
|  | 	/// Get the symmetric inverse of this matrix as a 3-by-3.
 | ||
|  | 	/// Returns the zero matrix if singular.
 | ||
|  | 	void GetSymInverse33(b2Mat33* M) const; | ||
|  | 
 | ||
|  | 	b2Vec3 ex, ey, ez; | ||
|  | }; | ||
|  | 
 | ||
|  | /// Rotation
 | ||
|  | struct b2Rot | ||
|  | { | ||
|  | 	b2Rot() {} | ||
|  | 
 | ||
|  | 	/// Initialize from an angle in radians
 | ||
|  | 	explicit b2Rot(float32 angle) | ||
|  | 	{ | ||
|  | 		/// TODO_ERIN optimize
 | ||
|  | 		s = sinf(angle); | ||
|  | 		c = cosf(angle); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Set using an angle in radians.
 | ||
|  | 	void Set(float32 angle) | ||
|  | 	{ | ||
|  | 		/// TODO_ERIN optimize
 | ||
|  | 		s = sinf(angle); | ||
|  | 		c = cosf(angle); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Set to the identity rotation
 | ||
|  | 	void SetIdentity() | ||
|  | 	{ | ||
|  | 		s = 0.0f; | ||
|  | 		c = 1.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Get the angle in radians
 | ||
|  | 	float32 GetAngle() const | ||
|  | 	{ | ||
|  | 		return b2Atan2(s, c); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Get the x-axis
 | ||
|  | 	b2Vec2 GetXAxis() const | ||
|  | 	{ | ||
|  | 		return b2Vec2(c, s); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Get the u-axis
 | ||
|  | 	b2Vec2 GetYAxis() const | ||
|  | 	{ | ||
|  | 		return b2Vec2(-s, c); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Sine and cosine
 | ||
|  | 	float32 s, c; | ||
|  | }; | ||
|  | 
 | ||
|  | /// A transform contains translation and rotation. It is used to represent
 | ||
|  | /// the position and orientation of rigid frames.
 | ||
|  | struct b2Transform | ||
|  | { | ||
|  | 	/// The default constructor does nothing.
 | ||
|  | 	b2Transform() {} | ||
|  | 
 | ||
|  | 	/// Initialize using a position vector and a rotation.
 | ||
|  | 	b2Transform(const b2Vec2& position, const b2Rot& rotation) : p(position), q(rotation) {} | ||
|  | 
 | ||
|  | 	/// Set this to the identity transform.
 | ||
|  | 	void SetIdentity() | ||
|  | 	{ | ||
|  | 		p.SetZero(); | ||
|  | 		q.SetIdentity(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/// Set this based on the position and angle.
 | ||
|  | 	void Set(const b2Vec2& position, float32 angle) | ||
|  | 	{ | ||
|  | 		p = position; | ||
|  | 		q.Set(angle); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Vec2 p; | ||
|  | 	b2Rot q; | ||
|  | }; | ||
|  | 
 | ||
|  | /// This describes the motion of a body/shape for TOI computation.
 | ||
|  | /// Shapes are defined with respect to the body origin, which may
 | ||
|  | /// no coincide with the center of mass. However, to support dynamics
 | ||
|  | /// we must interpolate the center of mass position.
 | ||
|  | struct b2Sweep | ||
|  | { | ||
|  | 	/// Get the interpolated transform at a specific time.
 | ||
|  | 	/// @param beta is a factor in [0,1], where 0 indicates alpha0.
 | ||
|  | 	void GetTransform(b2Transform* xfb, float32 beta) const; | ||
|  | 
 | ||
|  | 	/// Advance the sweep forward, yielding a new initial state.
 | ||
|  | 	/// @param alpha the new initial time.
 | ||
|  | 	void Advance(float32 alpha); | ||
|  | 
 | ||
|  | 	/// Normalize the angles.
 | ||
|  | 	void Normalize(); | ||
|  | 
 | ||
|  | 	b2Vec2 localCenter;	///< local center of mass position
 | ||
|  | 	b2Vec2 c0, c;		///< center world positions
 | ||
|  | 	float32 a0, a;		///< world angles
 | ||
|  | 
 | ||
|  | 	/// Fraction of the current time step in the range [0,1]
 | ||
|  | 	/// c0 and a0 are the positions at alpha0.
 | ||
|  | 	float32 alpha0; | ||
|  | }; | ||
|  | 
 | ||
|  | /// Useful constant
 | ||
|  | extern const b2Vec2 b2Vec2_zero; | ||
|  | 
 | ||
|  | /// Perform the dot product on two vectors.
 | ||
|  | inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	return a.x * b.x + a.y * b.y; | ||
|  | } | ||
|  | 
 | ||
|  | /// Perform the cross product on two vectors. In 2D this produces a scalar.
 | ||
|  | inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	return a.x * b.y - a.y * b.x; | ||
|  | } | ||
|  | 
 | ||
|  | /// Perform the cross product on a vector and a scalar. In 2D this produces
 | ||
|  | /// a vector.
 | ||
|  | inline b2Vec2 b2Cross(const b2Vec2& a, float32 s) | ||
|  | { | ||
|  | 	return b2Vec2(s * a.y, -s * a.x); | ||
|  | } | ||
|  | 
 | ||
|  | /// Perform the cross product on a scalar and a vector. In 2D this produces
 | ||
|  | /// a vector.
 | ||
|  | inline b2Vec2 b2Cross(float32 s, const b2Vec2& a) | ||
|  | { | ||
|  | 	return b2Vec2(-s * a.y, s * a.x); | ||
|  | } | ||
|  | 
 | ||
|  | /// Multiply a matrix times a vector. If a rotation matrix is provided,
 | ||
|  | /// then this transforms the vector from one frame to another.
 | ||
|  | inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v) | ||
|  | { | ||
|  | 	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); | ||
|  | } | ||
|  | 
 | ||
|  | /// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
 | ||
|  | /// then this transforms the vector from one frame to another (inverse transform).
 | ||
|  | inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v) | ||
|  | { | ||
|  | 	return b2Vec2(b2Dot(v, A.ex), b2Dot(v, A.ey)); | ||
|  | } | ||
|  | 
 | ||
|  | /// Add two vectors component-wise.
 | ||
|  | inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	return b2Vec2(a.x + b.x, a.y + b.y); | ||
|  | } | ||
|  | 
 | ||
|  | /// Subtract two vectors component-wise.
 | ||
|  | inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	return b2Vec2(a.x - b.x, a.y - b.y); | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Vec2 operator * (float32 s, const b2Vec2& a) | ||
|  | { | ||
|  | 	return b2Vec2(s * a.x, s * a.y); | ||
|  | } | ||
|  | 
 | ||
|  | inline bool operator == (const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	return a.x == b.x && a.y == b.y; | ||
|  | } | ||
|  | 
 | ||
|  | inline bool operator != (const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	return a.x != b.x || a.y != b.y; | ||
|  | } | ||
|  | 
 | ||
|  | inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	b2Vec2 c = a - b; | ||
|  | 	return c.Length(); | ||
|  | } | ||
|  | 
 | ||
|  | inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	b2Vec2 c = a - b; | ||
|  | 	return b2Dot(c, c); | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Vec3 operator * (float32 s, const b2Vec3& a) | ||
|  | { | ||
|  | 	return b2Vec3(s * a.x, s * a.y, s * a.z); | ||
|  | } | ||
|  | 
 | ||
|  | /// Add two vectors component-wise.
 | ||
|  | inline b2Vec3 operator + (const b2Vec3& a, const b2Vec3& b) | ||
|  | { | ||
|  | 	return b2Vec3(a.x + b.x, a.y + b.y, a.z + b.z); | ||
|  | } | ||
|  | 
 | ||
|  | /// Subtract two vectors component-wise.
 | ||
|  | inline b2Vec3 operator - (const b2Vec3& a, const b2Vec3& b) | ||
|  | { | ||
|  | 	return b2Vec3(a.x - b.x, a.y - b.y, a.z - b.z); | ||
|  | } | ||
|  | 
 | ||
|  | /// Perform the dot product on two vectors.
 | ||
|  | inline float32 b2Dot(const b2Vec3& a, const b2Vec3& b) | ||
|  | { | ||
|  | 	return a.x * b.x + a.y * b.y + a.z * b.z; | ||
|  | } | ||
|  | 
 | ||
|  | /// Perform the cross product on two vectors.
 | ||
|  | inline b2Vec3 b2Cross(const b2Vec3& a, const b2Vec3& b) | ||
|  | { | ||
|  | 	return b2Vec3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B) | ||
|  | { | ||
|  | 	return b2Mat22(A.ex + B.ex, A.ey + B.ey); | ||
|  | } | ||
|  | 
 | ||
|  | // A * B
 | ||
|  | inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B) | ||
|  | { | ||
|  | 	return b2Mat22(b2Mul(A, B.ex), b2Mul(A, B.ey)); | ||
|  | } | ||
|  | 
 | ||
|  | // A^T * B
 | ||
|  | inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B) | ||
|  | { | ||
|  | 	b2Vec2 c1(b2Dot(A.ex, B.ex), b2Dot(A.ey, B.ex)); | ||
|  | 	b2Vec2 c2(b2Dot(A.ex, B.ey), b2Dot(A.ey, B.ey)); | ||
|  | 	return b2Mat22(c1, c2); | ||
|  | } | ||
|  | 
 | ||
|  | /// Multiply a matrix times a vector.
 | ||
|  | inline b2Vec3 b2Mul(const b2Mat33& A, const b2Vec3& v) | ||
|  | { | ||
|  | 	return v.x * A.ex + v.y * A.ey + v.z * A.ez; | ||
|  | } | ||
|  | 
 | ||
|  | /// Multiply a matrix times a vector.
 | ||
|  | inline b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v) | ||
|  | { | ||
|  | 	return b2Vec2(A.ex.x * v.x + A.ey.x * v.y, A.ex.y * v.x + A.ey.y * v.y); | ||
|  | } | ||
|  | 
 | ||
|  | /// Multiply two rotations: q * r
 | ||
|  | inline b2Rot b2Mul(const b2Rot& q, const b2Rot& r) | ||
|  | { | ||
|  | 	// [qc -qs] * [rc -rs] = [qc*rc-qs*rs -qc*rs-qs*rc]
 | ||
|  | 	// [qs  qc]   [rs  rc]   [qs*rc+qc*rs -qs*rs+qc*rc]
 | ||
|  | 	// s = qs * rc + qc * rs
 | ||
|  | 	// c = qc * rc - qs * rs
 | ||
|  | 	b2Rot qr; | ||
|  | 	qr.s = q.s * r.c + q.c * r.s; | ||
|  | 	qr.c = q.c * r.c - q.s * r.s; | ||
|  | 	return qr; | ||
|  | } | ||
|  | 
 | ||
|  | /// Transpose multiply two rotations: qT * r
 | ||
|  | inline b2Rot b2MulT(const b2Rot& q, const b2Rot& r) | ||
|  | { | ||
|  | 	// [ qc qs] * [rc -rs] = [qc*rc+qs*rs -qc*rs+qs*rc]
 | ||
|  | 	// [-qs qc]   [rs  rc]   [-qs*rc+qc*rs qs*rs+qc*rc]
 | ||
|  | 	// s = qc * rs - qs * rc
 | ||
|  | 	// c = qc * rc + qs * rs
 | ||
|  | 	b2Rot qr; | ||
|  | 	qr.s = q.c * r.s - q.s * r.c; | ||
|  | 	qr.c = q.c * r.c + q.s * r.s; | ||
|  | 	return qr; | ||
|  | } | ||
|  | 
 | ||
|  | /// Rotate a vector
 | ||
|  | inline b2Vec2 b2Mul(const b2Rot& q, const b2Vec2& v) | ||
|  | { | ||
|  | 	return b2Vec2(q.c * v.x - q.s * v.y, q.s * v.x + q.c * v.y); | ||
|  | } | ||
|  | 
 | ||
|  | /// Inverse rotate a vector
 | ||
|  | inline b2Vec2 b2MulT(const b2Rot& q, const b2Vec2& v) | ||
|  | { | ||
|  | 	return b2Vec2(q.c * v.x + q.s * v.y, -q.s * v.x + q.c * v.y); | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Vec2 b2Mul(const b2Transform& T, const b2Vec2& v) | ||
|  | { | ||
|  | 	float32 x = (T.q.c * v.x - T.q.s * v.y) + T.p.x; | ||
|  | 	float32 y = (T.q.s * v.x + T.q.c * v.y) + T.p.y; | ||
|  | 
 | ||
|  | 	return b2Vec2(x, y); | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Vec2 b2MulT(const b2Transform& T, const b2Vec2& v) | ||
|  | { | ||
|  | 	float32 px = v.x - T.p.x; | ||
|  | 	float32 py = v.y - T.p.y; | ||
|  | 	float32 x = (T.q.c * px + T.q.s * py); | ||
|  | 	float32 y = (-T.q.s * px + T.q.c * py); | ||
|  | 
 | ||
|  | 	return b2Vec2(x, y); | ||
|  | } | ||
|  | 
 | ||
|  | // v2 = A.q.Rot(B.q.Rot(v1) + B.p) + A.p
 | ||
|  | //    = (A.q * B.q).Rot(v1) + A.q.Rot(B.p) + A.p
 | ||
|  | inline b2Transform b2Mul(const b2Transform& A, const b2Transform& B) | ||
|  | { | ||
|  | 	b2Transform C; | ||
|  | 	C.q = b2Mul(A.q, B.q); | ||
|  | 	C.p = b2Mul(A.q, B.p) + A.p; | ||
|  | 	return C; | ||
|  | } | ||
|  | 
 | ||
|  | // v2 = A.q' * (B.q * v1 + B.p - A.p)
 | ||
|  | //    = A.q' * B.q * v1 + A.q' * (B.p - A.p)
 | ||
|  | inline b2Transform b2MulT(const b2Transform& A, const b2Transform& B) | ||
|  | { | ||
|  | 	b2Transform C; | ||
|  | 	C.q = b2MulT(A.q, B.q); | ||
|  | 	C.p = b2MulT(A.q, B.p - A.p); | ||
|  | 	return C; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | inline T b2Abs(T a) | ||
|  | { | ||
|  | 	return a > T(0) ? a : -a; | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Vec2 b2Abs(const b2Vec2& a) | ||
|  | { | ||
|  | 	return b2Vec2(b2Abs(a.x), b2Abs(a.y)); | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Mat22 b2Abs(const b2Mat22& A) | ||
|  | { | ||
|  | 	return b2Mat22(b2Abs(A.ex), b2Abs(A.ey)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | inline T b2Min(T a, T b) | ||
|  | { | ||
|  | 	return a < b ? a : b; | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | inline T b2Max(T a, T b) | ||
|  | { | ||
|  | 	return a > b ? a : b; | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b) | ||
|  | { | ||
|  | 	return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y)); | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T> | ||
|  | inline T b2Clamp(T a, T low, T high) | ||
|  | { | ||
|  | 	return b2Max(low, b2Min(a, high)); | ||
|  | } | ||
|  | 
 | ||
|  | inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high) | ||
|  | { | ||
|  | 	return b2Max(low, b2Min(a, high)); | ||
|  | } | ||
|  | 
 | ||
|  | template<typename T> inline void b2Swap(T& a, T& b) | ||
|  | { | ||
|  | 	T tmp = a; | ||
|  | 	a = b; | ||
|  | 	b = tmp; | ||
|  | } | ||
|  | 
 | ||
|  | /// "Next Largest Power of 2
 | ||
|  | /// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
 | ||
|  | /// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
 | ||
|  | /// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
 | ||
|  | /// largest power of 2. For a 32-bit value:"
 | ||
|  | inline uint32 b2NextPowerOfTwo(uint32 x) | ||
|  | { | ||
|  | 	x |= (x >> 1); | ||
|  | 	x |= (x >> 2); | ||
|  | 	x |= (x >> 4); | ||
|  | 	x |= (x >> 8); | ||
|  | 	x |= (x >> 16); | ||
|  | 	return x + 1; | ||
|  | } | ||
|  | 
 | ||
|  | inline bool b2IsPowerOfTwo(uint32 x) | ||
|  | { | ||
|  | 	bool result = x > 0 && (x & (x - 1)) == 0; | ||
|  | 	return result; | ||
|  | } | ||
|  | 
 | ||
|  | inline void b2Sweep::GetTransform(b2Transform* xf, float32 beta) const | ||
|  | { | ||
|  | 	xf->p = (1.0f - beta) * c0 + beta * c; | ||
|  | 	float32 angle = (1.0f - beta) * a0 + beta * a; | ||
|  | 	xf->q.Set(angle); | ||
|  | 
 | ||
|  | 	// Shift to origin
 | ||
|  | 	xf->p -= b2Mul(xf->q, localCenter); | ||
|  | } | ||
|  | 
 | ||
|  | inline void b2Sweep::Advance(float32 alpha) | ||
|  | { | ||
|  | 	b2Assert(alpha0 < 1.0f); | ||
|  | 	float32 beta = (alpha - alpha0) / (1.0f - alpha0); | ||
|  | 	c0 += beta * (c - c0); | ||
|  | 	a0 += beta * (a - a0); | ||
|  | 	alpha0 = alpha; | ||
|  | } | ||
|  | 
 | ||
|  | /// Normalize an angle in radians to be between -pi and pi
 | ||
|  | inline void b2Sweep::Normalize() | ||
|  | { | ||
|  | 	float32 twoPi = 2.0f * b2_pi; | ||
|  | 	float32 d =  twoPi * floorf(a0 / twoPi); | ||
|  | 	a0 -= d; | ||
|  | 	a -= d; | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 |