781 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			781 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | /*
 | ||
|  | * Copyright (c) 2009 Erin Catto http://www.box2d.org
 | ||
|  | * | ||
|  | * This software is provided 'as-is', without any express or implied | ||
|  | * warranty.  In no event will the authors be held liable for any damages | ||
|  | * arising from the use of this software. | ||
|  | * Permission is granted to anyone to use this software for any purpose, | ||
|  | * including commercial applications, and to alter it and redistribute it | ||
|  | * freely, subject to the following restrictions: | ||
|  | * 1. The origin of this software must not be misrepresented; you must not | ||
|  | * claim that you wrote the original software. If you use this software | ||
|  | * in a product, an acknowledgment in the product documentation would be | ||
|  | * appreciated but is not required. | ||
|  | * 2. Altered source versions must be plainly marked as such, and must not be | ||
|  | * misrepresented as being the original software. | ||
|  | * 3. This notice may not be removed or altered from any source distribution. | ||
|  | */ | ||
|  | 
 | ||
|  | #include "Box2D/Collision/b2DynamicTree.h"
 | ||
|  | #include <string.h>
 | ||
|  | 
 | ||
|  | b2DynamicTree::b2DynamicTree() | ||
|  | { | ||
|  | 	m_root = b2_nullNode; | ||
|  | 
 | ||
|  | 	m_nodeCapacity = 16; | ||
|  | 	m_nodeCount = 0; | ||
|  | 	m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); | ||
|  | 	memset(m_nodes, 0, m_nodeCapacity * sizeof(b2TreeNode)); | ||
|  | 
 | ||
|  | 	// Build a linked list for the free list.
 | ||
|  | 	for (int32 i = 0; i < m_nodeCapacity - 1; ++i) | ||
|  | 	{ | ||
|  | 		m_nodes[i].next = i + 1; | ||
|  | 		m_nodes[i].height = -1; | ||
|  | 	} | ||
|  | 	m_nodes[m_nodeCapacity-1].next = b2_nullNode; | ||
|  | 	m_nodes[m_nodeCapacity-1].height = -1; | ||
|  | 	m_freeList = 0; | ||
|  | 
 | ||
|  | 	m_path = 0; | ||
|  | 
 | ||
|  | 	m_insertionCount = 0; | ||
|  | } | ||
|  | 
 | ||
|  | b2DynamicTree::~b2DynamicTree() | ||
|  | { | ||
|  | 	// This frees the entire tree in one shot.
 | ||
|  | 	b2Free(m_nodes); | ||
|  | } | ||
|  | 
 | ||
|  | // Allocate a node from the pool. Grow the pool if necessary.
 | ||
|  | int32 b2DynamicTree::AllocateNode() | ||
|  | { | ||
|  | 	// Expand the node pool as needed.
 | ||
|  | 	if (m_freeList == b2_nullNode) | ||
|  | 	{ | ||
|  | 		b2Assert(m_nodeCount == m_nodeCapacity); | ||
|  | 
 | ||
|  | 		// The free list is empty. Rebuild a bigger pool.
 | ||
|  | 		b2TreeNode* oldNodes = m_nodes; | ||
|  | 		m_nodeCapacity *= 2; | ||
|  | 		m_nodes = (b2TreeNode*)b2Alloc(m_nodeCapacity * sizeof(b2TreeNode)); | ||
|  | 		memcpy(m_nodes, oldNodes, m_nodeCount * sizeof(b2TreeNode)); | ||
|  | 		b2Free(oldNodes); | ||
|  | 
 | ||
|  | 		// Build a linked list for the free list. The parent
 | ||
|  | 		// pointer becomes the "next" pointer.
 | ||
|  | 		for (int32 i = m_nodeCount; i < m_nodeCapacity - 1; ++i) | ||
|  | 		{ | ||
|  | 			m_nodes[i].next = i + 1; | ||
|  | 			m_nodes[i].height = -1; | ||
|  | 		} | ||
|  | 		m_nodes[m_nodeCapacity-1].next = b2_nullNode; | ||
|  | 		m_nodes[m_nodeCapacity-1].height = -1; | ||
|  | 		m_freeList = m_nodeCount; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Peel a node off the free list.
 | ||
|  | 	int32 nodeId = m_freeList; | ||
|  | 	m_freeList = m_nodes[nodeId].next; | ||
|  | 	m_nodes[nodeId].parent = b2_nullNode; | ||
|  | 	m_nodes[nodeId].child1 = b2_nullNode; | ||
|  | 	m_nodes[nodeId].child2 = b2_nullNode; | ||
|  | 	m_nodes[nodeId].height = 0; | ||
|  | 	m_nodes[nodeId].userData = nullptr; | ||
|  | 	++m_nodeCount; | ||
|  | 	return nodeId; | ||
|  | } | ||
|  | 
 | ||
|  | // Return a node to the pool.
 | ||
|  | void b2DynamicTree::FreeNode(int32 nodeId) | ||
|  | { | ||
|  | 	b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); | ||
|  | 	b2Assert(0 < m_nodeCount); | ||
|  | 	m_nodes[nodeId].next = m_freeList; | ||
|  | 	m_nodes[nodeId].height = -1; | ||
|  | 	m_freeList = nodeId; | ||
|  | 	--m_nodeCount; | ||
|  | } | ||
|  | 
 | ||
|  | // Create a proxy in the tree as a leaf node. We return the index
 | ||
|  | // of the node instead of a pointer so that we can grow
 | ||
|  | // the node pool.
 | ||
|  | int32 b2DynamicTree::CreateProxy(const b2AABB& aabb, void* userData) | ||
|  | { | ||
|  | 	int32 proxyId = AllocateNode(); | ||
|  | 
 | ||
|  | 	// Fatten the aabb.
 | ||
|  | 	b2Vec2 r(b2_aabbExtension, b2_aabbExtension); | ||
|  | 	m_nodes[proxyId].aabb.lowerBound = aabb.lowerBound - r; | ||
|  | 	m_nodes[proxyId].aabb.upperBound = aabb.upperBound + r; | ||
|  | 	m_nodes[proxyId].userData = userData; | ||
|  | 	m_nodes[proxyId].height = 0; | ||
|  | 
 | ||
|  | 	InsertLeaf(proxyId); | ||
|  | 
 | ||
|  | 	return proxyId; | ||
|  | } | ||
|  | 
 | ||
|  | void b2DynamicTree::DestroyProxy(int32 proxyId) | ||
|  | { | ||
|  | 	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); | ||
|  | 	b2Assert(m_nodes[proxyId].IsLeaf()); | ||
|  | 
 | ||
|  | 	RemoveLeaf(proxyId); | ||
|  | 	FreeNode(proxyId); | ||
|  | } | ||
|  | 
 | ||
|  | bool b2DynamicTree::MoveProxy(int32 proxyId, const b2AABB& aabb, const b2Vec2& displacement) | ||
|  | { | ||
|  | 	b2Assert(0 <= proxyId && proxyId < m_nodeCapacity); | ||
|  | 
 | ||
|  | 	b2Assert(m_nodes[proxyId].IsLeaf()); | ||
|  | 
 | ||
|  | 	if (m_nodes[proxyId].aabb.Contains(aabb)) | ||
|  | 	{ | ||
|  | 		return false; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	RemoveLeaf(proxyId); | ||
|  | 
 | ||
|  | 	// Extend AABB.
 | ||
|  | 	b2AABB b = aabb; | ||
|  | 	b2Vec2 r(b2_aabbExtension, b2_aabbExtension); | ||
|  | 	b.lowerBound = b.lowerBound - r; | ||
|  | 	b.upperBound = b.upperBound + r; | ||
|  | 
 | ||
|  | 	// Predict AABB displacement.
 | ||
|  | 	b2Vec2 d = b2_aabbMultiplier * displacement; | ||
|  | 
 | ||
|  | 	if (d.x < 0.0f) | ||
|  | 	{ | ||
|  | 		b.lowerBound.x += d.x; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		b.upperBound.x += d.x; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (d.y < 0.0f) | ||
|  | 	{ | ||
|  | 		b.lowerBound.y += d.y; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		b.upperBound.y += d.y; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	m_nodes[proxyId].aabb = b; | ||
|  | 
 | ||
|  | 	InsertLeaf(proxyId); | ||
|  | 	return true; | ||
|  | } | ||
|  | 
 | ||
|  | void b2DynamicTree::InsertLeaf(int32 leaf) | ||
|  | { | ||
|  | 	++m_insertionCount; | ||
|  | 
 | ||
|  | 	if (m_root == b2_nullNode) | ||
|  | 	{ | ||
|  | 		m_root = leaf; | ||
|  | 		m_nodes[m_root].parent = b2_nullNode; | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Find the best sibling for this node
 | ||
|  | 	b2AABB leafAABB = m_nodes[leaf].aabb; | ||
|  | 	int32 index = m_root; | ||
|  | 	while (m_nodes[index].IsLeaf() == false) | ||
|  | 	{ | ||
|  | 		int32 child1 = m_nodes[index].child1; | ||
|  | 		int32 child2 = m_nodes[index].child2; | ||
|  | 
 | ||
|  | 		float32 area = m_nodes[index].aabb.GetPerimeter(); | ||
|  | 
 | ||
|  | 		b2AABB combinedAABB; | ||
|  | 		combinedAABB.Combine(m_nodes[index].aabb, leafAABB); | ||
|  | 		float32 combinedArea = combinedAABB.GetPerimeter(); | ||
|  | 
 | ||
|  | 		// Cost of creating a new parent for this node and the new leaf
 | ||
|  | 		float32 cost = 2.0f * combinedArea; | ||
|  | 
 | ||
|  | 		// Minimum cost of pushing the leaf further down the tree
 | ||
|  | 		float32 inheritanceCost = 2.0f * (combinedArea - area); | ||
|  | 
 | ||
|  | 		// Cost of descending into child1
 | ||
|  | 		float32 cost1; | ||
|  | 		if (m_nodes[child1].IsLeaf()) | ||
|  | 		{ | ||
|  | 			b2AABB aabb; | ||
|  | 			aabb.Combine(leafAABB, m_nodes[child1].aabb); | ||
|  | 			cost1 = aabb.GetPerimeter() + inheritanceCost; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			b2AABB aabb; | ||
|  | 			aabb.Combine(leafAABB, m_nodes[child1].aabb); | ||
|  | 			float32 oldArea = m_nodes[child1].aabb.GetPerimeter(); | ||
|  | 			float32 newArea = aabb.GetPerimeter(); | ||
|  | 			cost1 = (newArea - oldArea) + inheritanceCost; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Cost of descending into child2
 | ||
|  | 		float32 cost2; | ||
|  | 		if (m_nodes[child2].IsLeaf()) | ||
|  | 		{ | ||
|  | 			b2AABB aabb; | ||
|  | 			aabb.Combine(leafAABB, m_nodes[child2].aabb); | ||
|  | 			cost2 = aabb.GetPerimeter() + inheritanceCost; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			b2AABB aabb; | ||
|  | 			aabb.Combine(leafAABB, m_nodes[child2].aabb); | ||
|  | 			float32 oldArea = m_nodes[child2].aabb.GetPerimeter(); | ||
|  | 			float32 newArea = aabb.GetPerimeter(); | ||
|  | 			cost2 = newArea - oldArea + inheritanceCost; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Descend according to the minimum cost.
 | ||
|  | 		if (cost < cost1 && cost < cost2) | ||
|  | 		{ | ||
|  | 			break; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Descend
 | ||
|  | 		if (cost1 < cost2) | ||
|  | 		{ | ||
|  | 			index = child1; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			index = child2; | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int32 sibling = index; | ||
|  | 
 | ||
|  | 	// Create a new parent.
 | ||
|  | 	int32 oldParent = m_nodes[sibling].parent; | ||
|  | 	int32 newParent = AllocateNode(); | ||
|  | 	m_nodes[newParent].parent = oldParent; | ||
|  | 	m_nodes[newParent].userData = nullptr; | ||
|  | 	m_nodes[newParent].aabb.Combine(leafAABB, m_nodes[sibling].aabb); | ||
|  | 	m_nodes[newParent].height = m_nodes[sibling].height + 1; | ||
|  | 
 | ||
|  | 	if (oldParent != b2_nullNode) | ||
|  | 	{ | ||
|  | 		// The sibling was not the root.
 | ||
|  | 		if (m_nodes[oldParent].child1 == sibling) | ||
|  | 		{ | ||
|  | 			m_nodes[oldParent].child1 = newParent; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			m_nodes[oldParent].child2 = newParent; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		m_nodes[newParent].child1 = sibling; | ||
|  | 		m_nodes[newParent].child2 = leaf; | ||
|  | 		m_nodes[sibling].parent = newParent; | ||
|  | 		m_nodes[leaf].parent = newParent; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		// The sibling was the root.
 | ||
|  | 		m_nodes[newParent].child1 = sibling; | ||
|  | 		m_nodes[newParent].child2 = leaf; | ||
|  | 		m_nodes[sibling].parent = newParent; | ||
|  | 		m_nodes[leaf].parent = newParent; | ||
|  | 		m_root = newParent; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	// Walk back up the tree fixing heights and AABBs
 | ||
|  | 	index = m_nodes[leaf].parent; | ||
|  | 	while (index != b2_nullNode) | ||
|  | 	{ | ||
|  | 		index = Balance(index); | ||
|  | 
 | ||
|  | 		int32 child1 = m_nodes[index].child1; | ||
|  | 		int32 child2 = m_nodes[index].child2; | ||
|  | 
 | ||
|  | 		b2Assert(child1 != b2_nullNode); | ||
|  | 		b2Assert(child2 != b2_nullNode); | ||
|  | 
 | ||
|  | 		m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); | ||
|  | 		m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); | ||
|  | 
 | ||
|  | 		index = m_nodes[index].parent; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//Validate();
 | ||
|  | } | ||
|  | 
 | ||
|  | void b2DynamicTree::RemoveLeaf(int32 leaf) | ||
|  | { | ||
|  | 	if (leaf == m_root) | ||
|  | 	{ | ||
|  | 		m_root = b2_nullNode; | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int32 parent = m_nodes[leaf].parent; | ||
|  | 	int32 grandParent = m_nodes[parent].parent; | ||
|  | 	int32 sibling; | ||
|  | 	if (m_nodes[parent].child1 == leaf) | ||
|  | 	{ | ||
|  | 		sibling = m_nodes[parent].child2; | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		sibling = m_nodes[parent].child1; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (grandParent != b2_nullNode) | ||
|  | 	{ | ||
|  | 		// Destroy parent and connect sibling to grandParent.
 | ||
|  | 		if (m_nodes[grandParent].child1 == parent) | ||
|  | 		{ | ||
|  | 			m_nodes[grandParent].child1 = sibling; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			m_nodes[grandParent].child2 = sibling; | ||
|  | 		} | ||
|  | 		m_nodes[sibling].parent = grandParent; | ||
|  | 		FreeNode(parent); | ||
|  | 
 | ||
|  | 		// Adjust ancestor bounds.
 | ||
|  | 		int32 index = grandParent; | ||
|  | 		while (index != b2_nullNode) | ||
|  | 		{ | ||
|  | 			index = Balance(index); | ||
|  | 
 | ||
|  | 			int32 child1 = m_nodes[index].child1; | ||
|  | 			int32 child2 = m_nodes[index].child2; | ||
|  | 
 | ||
|  | 			m_nodes[index].aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); | ||
|  | 			m_nodes[index].height = 1 + b2Max(m_nodes[child1].height, m_nodes[child2].height); | ||
|  | 
 | ||
|  | 			index = m_nodes[index].parent; | ||
|  | 		} | ||
|  | 	} | ||
|  | 	else | ||
|  | 	{ | ||
|  | 		m_root = sibling; | ||
|  | 		m_nodes[sibling].parent = b2_nullNode; | ||
|  | 		FreeNode(parent); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	//Validate();
 | ||
|  | } | ||
|  | 
 | ||
|  | // Perform a left or right rotation if node A is imbalanced.
 | ||
|  | // Returns the new root index.
 | ||
|  | int32 b2DynamicTree::Balance(int32 iA) | ||
|  | { | ||
|  | 	b2Assert(iA != b2_nullNode); | ||
|  | 
 | ||
|  | 	b2TreeNode* A = m_nodes + iA; | ||
|  | 	if (A->IsLeaf() || A->height < 2) | ||
|  | 	{ | ||
|  | 		return iA; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int32 iB = A->child1; | ||
|  | 	int32 iC = A->child2; | ||
|  | 	b2Assert(0 <= iB && iB < m_nodeCapacity); | ||
|  | 	b2Assert(0 <= iC && iC < m_nodeCapacity); | ||
|  | 
 | ||
|  | 	b2TreeNode* B = m_nodes + iB; | ||
|  | 	b2TreeNode* C = m_nodes + iC; | ||
|  | 
 | ||
|  | 	int32 balance = C->height - B->height; | ||
|  | 
 | ||
|  | 	// Rotate C up
 | ||
|  | 	if (balance > 1) | ||
|  | 	{ | ||
|  | 		int32 iF = C->child1; | ||
|  | 		int32 iG = C->child2; | ||
|  | 		b2TreeNode* F = m_nodes + iF; | ||
|  | 		b2TreeNode* G = m_nodes + iG; | ||
|  | 		b2Assert(0 <= iF && iF < m_nodeCapacity); | ||
|  | 		b2Assert(0 <= iG && iG < m_nodeCapacity); | ||
|  | 
 | ||
|  | 		// Swap A and C
 | ||
|  | 		C->child1 = iA; | ||
|  | 		C->parent = A->parent; | ||
|  | 		A->parent = iC; | ||
|  | 
 | ||
|  | 		// A's old parent should point to C
 | ||
|  | 		if (C->parent != b2_nullNode) | ||
|  | 		{ | ||
|  | 			if (m_nodes[C->parent].child1 == iA) | ||
|  | 			{ | ||
|  | 				m_nodes[C->parent].child1 = iC; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				b2Assert(m_nodes[C->parent].child2 == iA); | ||
|  | 				m_nodes[C->parent].child2 = iC; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			m_root = iC; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Rotate
 | ||
|  | 		if (F->height > G->height) | ||
|  | 		{ | ||
|  | 			C->child2 = iF; | ||
|  | 			A->child2 = iG; | ||
|  | 			G->parent = iA; | ||
|  | 			A->aabb.Combine(B->aabb, G->aabb); | ||
|  | 			C->aabb.Combine(A->aabb, F->aabb); | ||
|  | 
 | ||
|  | 			A->height = 1 + b2Max(B->height, G->height); | ||
|  | 			C->height = 1 + b2Max(A->height, F->height); | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			C->child2 = iG; | ||
|  | 			A->child2 = iF; | ||
|  | 			F->parent = iA; | ||
|  | 			A->aabb.Combine(B->aabb, F->aabb); | ||
|  | 			C->aabb.Combine(A->aabb, G->aabb); | ||
|  | 
 | ||
|  | 			A->height = 1 + b2Max(B->height, F->height); | ||
|  | 			C->height = 1 + b2Max(A->height, G->height); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		return iC; | ||
|  | 	} | ||
|  | 	 | ||
|  | 	// Rotate B up
 | ||
|  | 	if (balance < -1) | ||
|  | 	{ | ||
|  | 		int32 iD = B->child1; | ||
|  | 		int32 iE = B->child2; | ||
|  | 		b2TreeNode* D = m_nodes + iD; | ||
|  | 		b2TreeNode* E = m_nodes + iE; | ||
|  | 		b2Assert(0 <= iD && iD < m_nodeCapacity); | ||
|  | 		b2Assert(0 <= iE && iE < m_nodeCapacity); | ||
|  | 
 | ||
|  | 		// Swap A and B
 | ||
|  | 		B->child1 = iA; | ||
|  | 		B->parent = A->parent; | ||
|  | 		A->parent = iB; | ||
|  | 
 | ||
|  | 		// A's old parent should point to B
 | ||
|  | 		if (B->parent != b2_nullNode) | ||
|  | 		{ | ||
|  | 			if (m_nodes[B->parent].child1 == iA) | ||
|  | 			{ | ||
|  | 				m_nodes[B->parent].child1 = iB; | ||
|  | 			} | ||
|  | 			else | ||
|  | 			{ | ||
|  | 				b2Assert(m_nodes[B->parent].child2 == iA); | ||
|  | 				m_nodes[B->parent].child2 = iB; | ||
|  | 			} | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			m_root = iB; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		// Rotate
 | ||
|  | 		if (D->height > E->height) | ||
|  | 		{ | ||
|  | 			B->child2 = iD; | ||
|  | 			A->child1 = iE; | ||
|  | 			E->parent = iA; | ||
|  | 			A->aabb.Combine(C->aabb, E->aabb); | ||
|  | 			B->aabb.Combine(A->aabb, D->aabb); | ||
|  | 
 | ||
|  | 			A->height = 1 + b2Max(C->height, E->height); | ||
|  | 			B->height = 1 + b2Max(A->height, D->height); | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			B->child2 = iE; | ||
|  | 			A->child1 = iD; | ||
|  | 			D->parent = iA; | ||
|  | 			A->aabb.Combine(C->aabb, D->aabb); | ||
|  | 			B->aabb.Combine(A->aabb, E->aabb); | ||
|  | 
 | ||
|  | 			A->height = 1 + b2Max(C->height, D->height); | ||
|  | 			B->height = 1 + b2Max(A->height, E->height); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		return iB; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return iA; | ||
|  | } | ||
|  | 
 | ||
|  | int32 b2DynamicTree::GetHeight() const | ||
|  | { | ||
|  | 	if (m_root == b2_nullNode) | ||
|  | 	{ | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return m_nodes[m_root].height; | ||
|  | } | ||
|  | 
 | ||
|  | //
 | ||
|  | float32 b2DynamicTree::GetAreaRatio() const | ||
|  | { | ||
|  | 	if (m_root == b2_nullNode) | ||
|  | 	{ | ||
|  | 		return 0.0f; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const b2TreeNode* root = m_nodes + m_root; | ||
|  | 	float32 rootArea = root->aabb.GetPerimeter(); | ||
|  | 
 | ||
|  | 	float32 totalArea = 0.0f; | ||
|  | 	for (int32 i = 0; i < m_nodeCapacity; ++i) | ||
|  | 	{ | ||
|  | 		const b2TreeNode* node = m_nodes + i; | ||
|  | 		if (node->height < 0) | ||
|  | 		{ | ||
|  | 			// Free node in pool
 | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		totalArea += node->aabb.GetPerimeter(); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return totalArea / rootArea; | ||
|  | } | ||
|  | 
 | ||
|  | // Compute the height of a sub-tree.
 | ||
|  | int32 b2DynamicTree::ComputeHeight(int32 nodeId) const | ||
|  | { | ||
|  | 	b2Assert(0 <= nodeId && nodeId < m_nodeCapacity); | ||
|  | 	b2TreeNode* node = m_nodes + nodeId; | ||
|  | 
 | ||
|  | 	if (node->IsLeaf()) | ||
|  | 	{ | ||
|  | 		return 0; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	int32 height1 = ComputeHeight(node->child1); | ||
|  | 	int32 height2 = ComputeHeight(node->child2); | ||
|  | 	return 1 + b2Max(height1, height2); | ||
|  | } | ||
|  | 
 | ||
|  | int32 b2DynamicTree::ComputeHeight() const | ||
|  | { | ||
|  | 	int32 height = ComputeHeight(m_root); | ||
|  | 	return height; | ||
|  | } | ||
|  | 
 | ||
|  | void b2DynamicTree::ValidateStructure(int32 index) const | ||
|  | { | ||
|  | 	if (index == b2_nullNode) | ||
|  | 	{ | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if (index == m_root) | ||
|  | 	{ | ||
|  | 		b2Assert(m_nodes[index].parent == b2_nullNode); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const b2TreeNode* node = m_nodes + index; | ||
|  | 
 | ||
|  | 	int32 child1 = node->child1; | ||
|  | 	int32 child2 = node->child2; | ||
|  | 
 | ||
|  | 	if (node->IsLeaf()) | ||
|  | 	{ | ||
|  | 		b2Assert(child1 == b2_nullNode); | ||
|  | 		b2Assert(child2 == b2_nullNode); | ||
|  | 		b2Assert(node->height == 0); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Assert(0 <= child1 && child1 < m_nodeCapacity); | ||
|  | 	b2Assert(0 <= child2 && child2 < m_nodeCapacity); | ||
|  | 
 | ||
|  | 	b2Assert(m_nodes[child1].parent == index); | ||
|  | 	b2Assert(m_nodes[child2].parent == index); | ||
|  | 
 | ||
|  | 	ValidateStructure(child1); | ||
|  | 	ValidateStructure(child2); | ||
|  | } | ||
|  | 
 | ||
|  | void b2DynamicTree::ValidateMetrics(int32 index) const | ||
|  | { | ||
|  | 	if (index == b2_nullNode) | ||
|  | 	{ | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	const b2TreeNode* node = m_nodes + index; | ||
|  | 
 | ||
|  | 	int32 child1 = node->child1; | ||
|  | 	int32 child2 = node->child2; | ||
|  | 
 | ||
|  | 	if (node->IsLeaf()) | ||
|  | 	{ | ||
|  | 		b2Assert(child1 == b2_nullNode); | ||
|  | 		b2Assert(child2 == b2_nullNode); | ||
|  | 		b2Assert(node->height == 0); | ||
|  | 		return; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Assert(0 <= child1 && child1 < m_nodeCapacity); | ||
|  | 	b2Assert(0 <= child2 && child2 < m_nodeCapacity); | ||
|  | 
 | ||
|  | 	int32 height1 = m_nodes[child1].height; | ||
|  | 	int32 height2 = m_nodes[child2].height; | ||
|  | 	int32 height; | ||
|  | 	height = 1 + b2Max(height1, height2); | ||
|  | 	b2Assert(node->height == height); | ||
|  | 
 | ||
|  | 	b2AABB aabb; | ||
|  | 	aabb.Combine(m_nodes[child1].aabb, m_nodes[child2].aabb); | ||
|  | 
 | ||
|  | 	b2Assert(aabb.lowerBound == node->aabb.lowerBound); | ||
|  | 	b2Assert(aabb.upperBound == node->aabb.upperBound); | ||
|  | 
 | ||
|  | 	ValidateMetrics(child1); | ||
|  | 	ValidateMetrics(child2); | ||
|  | } | ||
|  | 
 | ||
|  | void b2DynamicTree::Validate() const | ||
|  | { | ||
|  | #if defined(b2DEBUG)
 | ||
|  | 	ValidateStructure(m_root); | ||
|  | 	ValidateMetrics(m_root); | ||
|  | 
 | ||
|  | 	int32 freeCount = 0; | ||
|  | 	int32 freeIndex = m_freeList; | ||
|  | 	while (freeIndex != b2_nullNode) | ||
|  | 	{ | ||
|  | 		b2Assert(0 <= freeIndex && freeIndex < m_nodeCapacity); | ||
|  | 		freeIndex = m_nodes[freeIndex].next; | ||
|  | 		++freeCount; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	b2Assert(GetHeight() == ComputeHeight()); | ||
|  | 
 | ||
|  | 	b2Assert(m_nodeCount + freeCount == m_nodeCapacity); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | int32 b2DynamicTree::GetMaxBalance() const | ||
|  | { | ||
|  | 	int32 maxBalance = 0; | ||
|  | 	for (int32 i = 0; i < m_nodeCapacity; ++i) | ||
|  | 	{ | ||
|  | 		const b2TreeNode* node = m_nodes + i; | ||
|  | 		if (node->height <= 1) | ||
|  | 		{ | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		b2Assert(node->IsLeaf() == false); | ||
|  | 
 | ||
|  | 		int32 child1 = node->child1; | ||
|  | 		int32 child2 = node->child2; | ||
|  | 		int32 balance = b2Abs(m_nodes[child2].height - m_nodes[child1].height); | ||
|  | 		maxBalance = b2Max(maxBalance, balance); | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return maxBalance; | ||
|  | } | ||
|  | 
 | ||
|  | void b2DynamicTree::RebuildBottomUp() | ||
|  | { | ||
|  | 	int32* nodes = (int32*)b2Alloc(m_nodeCount * sizeof(int32)); | ||
|  | 	int32 count = 0; | ||
|  | 
 | ||
|  | 	// Build array of leaves. Free the rest.
 | ||
|  | 	for (int32 i = 0; i < m_nodeCapacity; ++i) | ||
|  | 	{ | ||
|  | 		if (m_nodes[i].height < 0) | ||
|  | 		{ | ||
|  | 			// free node in pool
 | ||
|  | 			continue; | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if (m_nodes[i].IsLeaf()) | ||
|  | 		{ | ||
|  | 			m_nodes[i].parent = b2_nullNode; | ||
|  | 			nodes[count] = i; | ||
|  | 			++count; | ||
|  | 		} | ||
|  | 		else | ||
|  | 		{ | ||
|  | 			FreeNode(i); | ||
|  | 		} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	while (count > 1) | ||
|  | 	{ | ||
|  | 		float32 minCost = b2_maxFloat; | ||
|  | 		int32 iMin = -1, jMin = -1; | ||
|  | 		for (int32 i = 0; i < count; ++i) | ||
|  | 		{ | ||
|  | 			b2AABB aabbi = m_nodes[nodes[i]].aabb; | ||
|  | 
 | ||
|  | 			for (int32 j = i + 1; j < count; ++j) | ||
|  | 			{ | ||
|  | 				b2AABB aabbj = m_nodes[nodes[j]].aabb; | ||
|  | 				b2AABB b; | ||
|  | 				b.Combine(aabbi, aabbj); | ||
|  | 				float32 cost = b.GetPerimeter(); | ||
|  | 				if (cost < minCost) | ||
|  | 				{ | ||
|  | 					iMin = i; | ||
|  | 					jMin = j; | ||
|  | 					minCost = cost; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		int32 index1 = nodes[iMin]; | ||
|  | 		int32 index2 = nodes[jMin]; | ||
|  | 		b2TreeNode* child1 = m_nodes + index1; | ||
|  | 		b2TreeNode* child2 = m_nodes + index2; | ||
|  | 
 | ||
|  | 		int32 parentIndex = AllocateNode(); | ||
|  | 		b2TreeNode* parent = m_nodes + parentIndex; | ||
|  | 		parent->child1 = index1; | ||
|  | 		parent->child2 = index2; | ||
|  | 		parent->height = 1 + b2Max(child1->height, child2->height); | ||
|  | 		parent->aabb.Combine(child1->aabb, child2->aabb); | ||
|  | 		parent->parent = b2_nullNode; | ||
|  | 
 | ||
|  | 		child1->parent = parentIndex; | ||
|  | 		child2->parent = parentIndex; | ||
|  | 
 | ||
|  | 		nodes[jMin] = nodes[count-1]; | ||
|  | 		nodes[iMin] = parentIndex; | ||
|  | 		--count; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	m_root = nodes[0]; | ||
|  | 	b2Free(nodes); | ||
|  | 
 | ||
|  | 	Validate(); | ||
|  | } | ||
|  | 
 | ||
|  | void b2DynamicTree::ShiftOrigin(const b2Vec2& newOrigin) | ||
|  | { | ||
|  | 	// Build array of leaves. Free the rest.
 | ||
|  | 	for (int32 i = 0; i < m_nodeCapacity; ++i) | ||
|  | 	{ | ||
|  | 		m_nodes[i].aabb.lowerBound -= newOrigin; | ||
|  | 		m_nodes[i].aabb.upperBound -= newOrigin; | ||
|  | 	} | ||
|  | } |