272 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			272 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | // Copyright (c) 2016-2018 Easy2D - Nomango
 | ||
|  | // 
 | ||
|  | // Permission is hereby granted, free of charge, to any person obtaining a copy
 | ||
|  | // of this software and associated documentation files (the "Software"), to deal
 | ||
|  | // in the Software without restriction, including without limitation the rights
 | ||
|  | // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | ||
|  | // copies of the Software, and to permit persons to whom the Software is
 | ||
|  | // furnished to do so, subject to the following conditions:
 | ||
|  | // 
 | ||
|  | // The above copyright notice and this permission notice shall be included in
 | ||
|  | // all copies or substantial portions of the Software.
 | ||
|  | // 
 | ||
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | ||
|  | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | ||
|  | // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | ||
|  | // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | ||
|  | // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | ||
|  | // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | ||
|  | // THE SOFTWARE.
 | ||
|  | 
 | ||
|  | #pragma once
 | ||
|  | #include "Vec2.hpp"
 | ||
|  | #include "Rect.hpp"
 | ||
|  | #include <algorithm>
 | ||
|  | 
 | ||
|  | namespace easy2d | ||
|  | { | ||
|  | 	namespace math | ||
|  | 	{ | ||
|  | 		struct Matrix | ||
|  | 		{ | ||
|  | 			union | ||
|  | 			{ | ||
|  | 				struct | ||
|  | 				{ | ||
|  | 					float m[6];  // m[3][2]
 | ||
|  | 				}; | ||
|  | 				 | ||
|  | 				struct | ||
|  | 				{ | ||
|  | 					float | ||
|  | 						_11, _12, | ||
|  | 						_21, _22, | ||
|  | 						_31, _32; | ||
|  | 				}; | ||
|  | 			}; | ||
|  | 
 | ||
|  | 			Matrix() | ||
|  | 				: _11(1.f), _12(0.f) | ||
|  | 				, _21(0.f), _22(1.f) | ||
|  | 				, _31(0.f), _32(0.f) | ||
|  | 			{ | ||
|  | 			} | ||
|  | 
 | ||
|  | 			Matrix(float _11, float _12, float _21, float _22, float _31, float _32) | ||
|  | 				: _11(_11), _12(_12), _21(_21), _22(_22), _31(_31), _32(_32) | ||
|  | 			{ | ||
|  | 			} | ||
|  | 
 | ||
|  | 			explicit Matrix(const float* p) | ||
|  | 			{ | ||
|  | 				for (int i = 0; i < 6; i++) | ||
|  | 					m[i] = p[i]; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			Matrix(Matrix const& other) | ||
|  | 				: _11(other._11), _12(other._12) | ||
|  | 				, _21(other._21), _22(other._22) | ||
|  | 				, _31(other._31), _32(other._32) | ||
|  | 			{ | ||
|  | 			} | ||
|  | 
 | ||
|  | 			template <typename T> | ||
|  | 			Matrix(T const& other) | ||
|  | 			{ | ||
|  | 				for (int i = 0; i < 6; i++) | ||
|  | 					m[i] = other[i]; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			inline void Identity() | ||
|  | 			{ | ||
|  | 				_11 = 1.f; _12 = 0.f; | ||
|  | 				_21 = 0.f; _12 = 1.f; | ||
|  | 				_31 = 0.f; _32 = 0.f; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			inline Vec2 Transform(const Vec2& v) const | ||
|  | 			{ | ||
|  | 				return Vec2( | ||
|  | 					v.x * _11 + v.y * _21 + _31, | ||
|  | 					v.x * _12 + v.y * _22 + _32 | ||
|  | 				); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			Rect Transform(const Rect & rect) const | ||
|  | 			{ | ||
|  | 				Vec2 top_left = Transform(rect.GetLeftTop()); | ||
|  | 				Vec2 top_right = Transform(rect.GetRightTop()); | ||
|  | 				Vec2 bottom_left = Transform(rect.GetLeftBottom()); | ||
|  | 				Vec2 bottom_right = Transform(rect.GetRightBottom()); | ||
|  | 
 | ||
|  | 				float left = std::min(std::min(top_left.x, top_right.x), std::min(bottom_left.x, bottom_right.x)); | ||
|  | 				float right = std::max(std::max(top_left.x, top_right.x), std::max(bottom_left.x, bottom_right.x)); | ||
|  | 				float top = std::min(std::min(top_left.y, top_right.y), std::min(bottom_left.y, bottom_right.y)); | ||
|  | 				float bottom = std::max(std::max(top_left.y, top_right.y), std::max(bottom_left.y, bottom_right.y)); | ||
|  | 
 | ||
|  | 				return Rect{ left, top, (right - left), (bottom - top) }; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			inline void Translate(const Vec2& v) | ||
|  | 			{ | ||
|  | 				_31 += _11 * v.x + _21 * v.y; | ||
|  | 				_32 += _12 * v.x + _22 * v.y; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			inline float operator [](unsigned int index) const | ||
|  | 			{ | ||
|  | 				return m[index]; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			template <typename T> | ||
|  | 			inline Matrix& operator =(T const& other) | ||
|  | 			{ | ||
|  | 				for (int i = 0; i < 6; i++) | ||
|  | 					m[i] = other[i]; | ||
|  | 				return *this; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			inline float Determinant() const | ||
|  | 			{ | ||
|  | 				return (_11 * _22) - (_12 * _21); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			inline bool IsIdentity() const | ||
|  | 			{ | ||
|  | 				return	_11 == 1.f && _12 == 0.f && | ||
|  | 						_21 == 0.f && _22 == 1.f && | ||
|  | 						_31 == 0.f && _32 == 0.f; | ||
|  | 			} | ||
|  | 
 | ||
|  | 			inline bool IsInvertible() const | ||
|  | 			{ | ||
|  | 				return 0 != Determinant(); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			static inline Matrix Translation(const Vec2& v) | ||
|  | 			{ | ||
|  | 				return Matrix( | ||
|  | 					1.f, 0.f, | ||
|  | 					0.f, 1.f, | ||
|  | 					v.x, v.y | ||
|  | 				); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			static inline Matrix Translation( | ||
|  | 				float x, | ||
|  | 				float y) | ||
|  | 			{ | ||
|  | 				return Translation(Vec2(x, y)); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			static inline Matrix Scaling( | ||
|  | 				const Vec2& v, | ||
|  | 				const Vec2& center = Vec2()) | ||
|  | 			{ | ||
|  | 				return Matrix( | ||
|  | 					v.x, 0.f, | ||
|  | 					0.f, v.y, | ||
|  | 					center.x - v.x * center.x, | ||
|  | 					center.y - v.y * center.y | ||
|  | 				); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			static inline Matrix Scaling( | ||
|  | 				float x, | ||
|  | 				float y, | ||
|  | 				const Vec2& center = Vec2()) | ||
|  | 			{ | ||
|  | 				return Scaling(Vec2(x, y), center); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			static inline Matrix Rotation( | ||
|  | 				float angle, | ||
|  | 				const Vec2& center = Vec2()) | ||
|  | 			{ | ||
|  | 				float s = math::Sin(angle); | ||
|  | 				float c = math::Cos(angle); | ||
|  | 				return Matrix( | ||
|  | 					c, s, | ||
|  | 					-s, c, | ||
|  | 					center.x * (1 - c) + center.y * s, | ||
|  | 					center.y * (1 - c) - center.x * s | ||
|  | 				); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			static inline Matrix Skewing( | ||
|  | 				float angle_x, | ||
|  | 				float angle_y, | ||
|  | 				const Vec2& center = Vec2()) | ||
|  | 			{ | ||
|  | 				float tx = math::Tan(angle_x); | ||
|  | 				float ty = math::Tan(angle_y); | ||
|  | 				return Matrix( | ||
|  | 					1.f, -ty, | ||
|  | 					-tx, 1.f, | ||
|  | 					center.y * tx, center.x * ty | ||
|  | 				); | ||
|  | 			} | ||
|  | 
 | ||
|  | 			static inline Matrix Invert(Matrix const& matrix) | ||
|  | 			{ | ||
|  | 				float det = 1.f / matrix.Determinant(); | ||
|  | 
 | ||
|  | 				return Matrix( | ||
|  | 					det * matrix._22, | ||
|  | 					-det * matrix._12, | ||
|  | 					-det * matrix._21, | ||
|  | 					det * matrix._11, | ||
|  | 					det * (matrix._21 * matrix._32 - matrix._22 * matrix._31), | ||
|  | 					det * (matrix._12 * matrix._31 - matrix._11 * matrix._32) | ||
|  | 				); | ||
|  | 			} | ||
|  | 		}; | ||
|  | 
 | ||
|  | 
 | ||
|  | 		// Use template expression to optimize matrix multiply
 | ||
|  | 		template <typename L, typename R> | ||
|  | 		struct MatrixMultiply | ||
|  | 		{ | ||
|  | 			L const& lhs; | ||
|  | 			R const& rhs; | ||
|  | 
 | ||
|  | 			MatrixMultiply(L const& lhs, R const& rhs) | ||
|  | 				: lhs(lhs) | ||
|  | 				, rhs(rhs) | ||
|  | 			{} | ||
|  | 
 | ||
|  | 			inline float operator [](unsigned int index) const | ||
|  | 			{ | ||
|  | 				switch (index) | ||
|  | 				{ | ||
|  | 				case 0: | ||
|  | 					return lhs[0] * rhs[0] + lhs[1] * rhs[2]; | ||
|  | 				case 1: | ||
|  | 					return lhs[0] * rhs[1] + lhs[1] * rhs[3]; | ||
|  | 				case 2: | ||
|  | 					return lhs[2] * rhs[0] + lhs[3] * rhs[2]; | ||
|  | 				case 3: | ||
|  | 					return lhs[2] * rhs[1] + lhs[3] * rhs[3]; | ||
|  | 				case 4: | ||
|  | 					return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4]; | ||
|  | 				case 5: | ||
|  | 					return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5]; | ||
|  | 				default: | ||
|  | 					return 0.f; | ||
|  | 				} | ||
|  | 			} | ||
|  | 		}; | ||
|  | 
 | ||
|  | 		inline MatrixMultiply<Matrix, Matrix> operator *(Matrix const& lhs, Matrix const& rhs) | ||
|  | 		{ | ||
|  | 			return MatrixMultiply<Matrix, Matrix>(lhs, rhs); | ||
|  | 		} | ||
|  | 
 | ||
|  | 		template <typename L, typename R> | ||
|  | 		inline MatrixMultiply<MatrixMultiply<L, R>, Matrix> operator *(MatrixMultiply<L, R> const& lhs, Matrix const& rhs) | ||
|  | 		{ | ||
|  | 			return MatrixMultiply<MatrixMultiply<L, R>, Matrix>(lhs, rhs); | ||
|  | 		} | ||
|  | 	} | ||
|  | } |