// Copyright (c) 2016-2018 Easy2D - Nomango // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #pragma once #include "vector.hpp" #include namespace easy2d { namespace math { class Matrix; template struct MatrixMultiply; inline MatrixMultiply operator *(Matrix const& lhs, Matrix const& rhs); template inline MatrixMultiply, Matrix> operator *(MatrixMultiply const& lhs, Matrix const& rhs); class Matrix { union { struct { float m[6]; // m[3][2] }; struct { float _11, _12, _21, _22, _31, _32; }; }; public: Matrix() : _11(1.f), _12(0.f) , _21(0.f), _22(1.f) , _31(0.f), _32(0.f) { } Matrix(float _11, float _12, float _21, float _22, float _31, float _32) : _11(_11), _12(_12), _21(_21), _22(_22), _31(_31), _32(_32) { } Matrix(const float* p) { for (int i = 0; i < 6; i++) m[i] = p[i]; } Matrix(Matrix const& other) : _11(other._11), _12(other._12) , _21(other._21), _22(other._22) , _31(other._31), _32(other._32) { } template Matrix(T const& other) { for (int i = 0; i < 6; i++) m[i] = other[i]; } inline float operator [](unsigned int index) const { return m[index]; } template inline Matrix& operator =(T const& other) { for (int i = 0; i < 6; i++) m[i] = other[i]; return *this; } inline Matrix& Identity() { _11 = 1.f; _12 = 0.f; _21 = 0.f; _12 = 1.f; _31 = 0.f; _32 = 0.f; return *this; } inline float Determinant() const { return (_11 * _22) - (_12 * _21); } inline bool IsIdentity() const { return _11 == 1.f && _12 == 0.f && _21 == 0.f && _22 == 1.f && _31 == 0.f && _32 == 0.f; } Vector2 Transform(const Vector2& v) const { return Vector2( v.x * _11 + v.y * _21 + _31, v.x * _12 + v.y * _22 + _32 ); } void Translate(const Vector2& v) { _31 += _11 * v.x + _21 * v.y; _32 += _12 * v.x + _22 * v.y; } inline operator D2D1_MATRIX_3X2_F const& () const { return reinterpret_cast(*this); } inline operator D2D1_MATRIX_3X2_F& () { return reinterpret_cast(*this); } static Matrix Translation(const Vector2& v) { return Matrix( 1.f, 0.f, 0.f, 1.f, v.x, v.y ); } static Matrix Translation( float x, float y) { return Translation(Vector2(x, y)); } static Matrix Scaling( const Vector2& v, const Vector2& center = Vector2()) { return Matrix( v.x, 0.f, 0.f, v.y, center.x - v.x * center.x, center.y - v.y * center.y ); } static Matrix Scaling( float x, float y, const Vector2& center = Vector2()) { return Scaling(Vector2(x, y), center); } static Matrix Rotation( float angle, const Vector2& center = Vector2()) { float s = math::Sin(angle); float c = math::Cos(angle); return Matrix( c, s, -s, c, center.x * (1 - c) + center.y * s, center.y * (1 - c) - center.x * s ); } static Matrix Skewing( float angle_x, float angle_y, const Vector2& center = Vector2()) { float tx = math::Tan(angle_x); float ty = math::Tan(angle_y); return Matrix( 1.f, -ty, -tx, 1.f, center.y * tx, center.x * ty ); } }; template struct MatrixMultiply { L const& lhs; R const& rhs; MatrixMultiply(L const& lhs, R const& rhs) : lhs(lhs) , rhs(rhs) {} inline float operator [](unsigned int index) const { switch (index) { case 0: return lhs[0] * rhs[0] + lhs[1] * rhs[2]; case 1: return lhs[0] * rhs[1] + lhs[1] * rhs[3]; case 2: return lhs[2] * rhs[0] + lhs[3] * rhs[2]; case 3: return lhs[2] * rhs[1] + lhs[3] * rhs[3]; case 4: return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4]; case 5: return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5]; default: return 0.f; } } }; inline MatrixMultiply operator *(Matrix const& lhs, Matrix const& rhs) { return MatrixMultiply(lhs, rhs); } template inline MatrixMultiply, Matrix> operator *(MatrixMultiply const& lhs, Matrix const& rhs) { return MatrixMultiply, Matrix>(lhs, rhs); } } }