// Copyright (c) 2016-2018 Kiwano - Nomango // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #pragma once #include "Vec2.hpp" #include "Rect.hpp" #include namespace kiwano { namespace math { template struct MatrixMultiply; template struct MatrixT { using value_type = _Ty; using vec2_type = Vec2T; using rect_type = RectT; union { struct { _Ty m[6]; // m[3][2] }; struct { _Ty _11, _12, _21, _22, _31, _32; }; }; MatrixT() : _11(1.f), _12(0.f) , _21(0.f), _22(1.f) , _31(0.f), _32(0.f) { } MatrixT(value_type _11, value_type _12, value_type _21, value_type _22, value_type _31, value_type _32) : _11(_11), _12(_12), _21(_21), _22(_22), _31(_31), _32(_32) { } explicit MatrixT(const value_type* p) { for (int i = 0; i < 6; i++) m[i] = p[i]; } MatrixT(MatrixT const& other) : _11(other._11), _12(other._12) , _21(other._21), _22(other._22) , _31(other._31), _32(other._32) { } template MatrixT(T const& other) { for (int i = 0; i < 6; i++) m[i] = other[i]; } inline value_type operator [](unsigned int index) const { return m[index]; } inline value_type& operator [](unsigned int index) { return m[index]; } template inline MatrixT& operator= (MatrixMultiply const& other) { for (int i = 0; i < 6; i++) m[i] = other[i]; return *this; } inline void Identity() { _11 = 1.f; _12 = 0.f; _21 = 0.f; _22 = 1.f; _31 = 0.f; _32 = 0.f; } inline bool IsIdentity() const { return _11 == 1.f && _12 == 0.f && _21 == 0.f && _22 == 1.f && _31 == 0.f && _32 == 0.f; } inline MatrixT Invert() const { value_type det = 1.f / Determinant(); return MatrixT( det * _22, -det * _12, -det * _21, det * _11, det * (_21 * _32 - _22 * _31), det * (_12 * _31 - _11 * _32) ); } inline bool IsInvertible() const { return 0 != Determinant(); } inline value_type Determinant() const { return (_11 * _22) - (_12 * _21); } inline vec2_type Transform(const vec2_type& v) const { return vec2_type( v.x * _11 + v.y * _21 + _31, v.x * _12 + v.y * _22 + _32 ); } rect_type Transform(const rect_type & rect) const { vec2_type top_left = Transform(rect.GetLeftTop()); vec2_type top_right = Transform(rect.GetRightTop()); vec2_type bottom_left = Transform(rect.GetLeftBottom()); vec2_type bottom_right = Transform(rect.GetRightBottom()); value_type left = std::min(std::min(top_left.x, top_right.x), std::min(bottom_left.x, bottom_right.x)); value_type right = std::max(std::max(top_left.x, top_right.x), std::max(bottom_left.x, bottom_right.x)); value_type top = std::min(std::min(top_left.y, top_right.y), std::min(bottom_left.y, bottom_right.y)); value_type bottom = std::max(std::max(top_left.y, top_right.y), std::max(bottom_left.y, bottom_right.y)); return rect_type{ left, top, (right - left), (bottom - top) }; } inline void Translate(const vec2_type& v) { _31 += _11 * v.x + _21 * v.y; _32 += _12 * v.x + _22 * v.y; } static inline MatrixT Translation(const vec2_type& v) { return MatrixT( 1.f, 0.f, 0.f, 1.f, v.x, v.y ); } static inline MatrixT Scaling(const vec2_type& v) { return MatrixT( v.x, 0.f, 0.f, v.y, 0.f, 0.f ); } static inline MatrixT Scaling( const vec2_type& v, const vec2_type& center) { return MatrixT( v.x, 0.f, 0.f, v.y, center.x - v.x * center.x, center.y - v.y * center.y ); } static inline MatrixT Rotation(value_type angle) { value_type s = math::Sin(angle); value_type c = math::Cos(angle); return MatrixT( c, s, -s, c, 0.f, 0.f ); } static inline MatrixT Rotation( value_type angle, const vec2_type& center) { value_type s = math::Sin(angle); value_type c = math::Cos(angle); return MatrixT( c, s, -s, c, center.x * (1 - c) + center.y * s, center.y * (1 - c) - center.x * s ); } static inline MatrixT Skewing(const vec2_type& angle) { value_type tx = math::Tan(angle.x); value_type ty = math::Tan(angle.y); return MatrixT( 1.f, -ty, -tx, 1.f, 0.f, 0.f ); } static inline MatrixT Skewing( const vec2_type& angle, const vec2_type& center) { value_type tx = math::Tan(angle.x); value_type ty = math::Tan(angle.y); return MatrixT( 1.f, -ty, -tx, 1.f, center.y * tx, center.x * ty ); } }; // Use template expression to optimize matrix multiply template struct MatrixMultiply { _Lty const& lhs; _Rty const& rhs; MatrixMultiply(_Lty const& lhs, _Rty const& rhs) : lhs(lhs) , rhs(rhs) {} inline _Ty operator [](unsigned int index) const { switch (index) { case 0: return lhs[0] * rhs[0] + lhs[1] * rhs[2]; case 1: return lhs[0] * rhs[1] + lhs[1] * rhs[3]; case 2: return lhs[2] * rhs[0] + lhs[3] * rhs[2]; case 3: return lhs[2] * rhs[1] + lhs[3] * rhs[3]; case 4: return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4]; case 5: return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5]; default: return 0.f; } } }; template inline MatrixMultiply<_Ty, MatrixT<_Ty>, MatrixT<_Ty>> operator *(MatrixT<_Ty> const& lhs, MatrixT<_Ty> const& rhs) { return MatrixMultiply<_Ty, MatrixT<_Ty>, MatrixT<_Ty>>(lhs, rhs); } template inline MatrixMultiply<_Ty, MatrixMultiply<_Ty, _Lty, _Rty>, MatrixT<_Ty>> operator *(MatrixMultiply<_Ty, _Lty, _Rty> const& lhs, MatrixT<_Ty> const& rhs) { return MatrixMultiply<_Ty, MatrixMultiply<_Ty, _Lty, _Rty>, MatrixT<_Ty>>(lhs, rhs); } } } namespace kiwano { using Matrix = kiwano::math::MatrixT; }