// Copyright (c) 2016-2018 Easy2D - Nomango // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #pragma once #include "vector.hpp" namespace easy2d { namespace math { class Matrix; template struct MatrixMultiply; inline MatrixMultiply operator *(Matrix const& lhs, Matrix const& rhs); template inline MatrixMultiply, Matrix> operator *(MatrixMultiply const& lhs, Matrix const& rhs); class Matrix { public: float m[6]; // m[3][2] public: Matrix() { m[0] = 1.f; m[1] = 0.f; m[2] = 0.f; m[3] = 1.f; m[4] = 0.f; m[5] = 0.f; } Matrix(float val[6]) { m[0] = val[0]; m[1] = val[1]; m[2] = val[2]; m[3] = val[3]; m[4] = val[4]; m[5] = val[5]; } Matrix(float _11, float _12, float _21, float _22, float _31, float _32) { m[0] = _11; m[1] = _12; m[2] = _21; m[3] = _22; m[4] = _31; m[5] = _32; } Matrix(Matrix const& other) { m[0] = other.m[0]; m[1] = other.m[1]; m[2] = other.m[2]; m[3] = other.m[3]; m[4] = other.m[4]; m[5] = other.m[5]; } template Matrix(T const& other) { m[0] = other[0]; m[1] = other[1]; m[2] = other[2]; m[3] = other[3]; m[4] = other[4]; m[5] = other[5]; } inline float operator [](unsigned int index) const { return m[index]; } template inline Matrix& operator =(T const& other) { m[0] = other[0]; m[1] = other[1]; m[2] = other[2]; m[3] = other[3]; m[4] = other[4]; m[5] = other[5]; return *this; } inline Matrix& Identity() { m[0] = 1.f; m[1] = 0.f; m[2] = 0.f; m[3] = 1.f; m[4] = 0.f; m[5] = 0.f; return *this; } inline float Determinant() const { return (m[0] * m[3]) - (m[1] * m[2]); } inline bool IsIdentity() const { return m[0] == 1.f && m[1] == 0.f && m[2] == 0.f && m[3] == 1.f && m[4] == 0.f && m[5] == 0.f; } Vector2 Transform(const Vector2& v) const { return Vector2( v.x * m[0] + v.y * m[2] + m[4], v.x * m[1] + v.y * m[3] + m[5] ); } static Matrix Translation(const Vector2& v) { return Matrix( 1.f, 0.f, 0.f, 1.f, v.x, v.y ); } static Matrix Translation( float x, float y) { return Translation(Vector2(x, y)); } static Matrix Scaling( const Vector2& v, const Vector2& center = Vector2()) { return Matrix( v.x, 0.f, 0.f, v.y, center.x - v.x * center.x, center.y - v.y * center.y ); } static Matrix Scaling( float x, float y, const Vector2& center = Vector2()) { return Scaling(Vector2(x, y), center); } static Matrix Rotation( float angle, const Vector2& center = Vector2()) { float s = math::Sin(angle); float c = math::Cos(angle); return Matrix( c, s, -s, c, center.x * (1 - c) + center.y * s, center.y * (1 - c) - center.x * s ); } static Matrix Skewing( float angle_x, float angle_y, const Vector2& center = Vector2()) { float tx = math::Tan(angle_x); float ty = math::Tan(angle_y); return Matrix( 1.f, -ty, -tx, 1.f, center.y * tx, center.x * ty ); } }; template struct MatrixMultiply { L const& lhs; R const& rhs; MatrixMultiply(L const& lhs, R const& rhs) : lhs(lhs) , rhs(rhs) {} inline float operator [](unsigned int index) const { switch (index) { case 0: return lhs[0] * rhs[0] + lhs[1] * rhs[2]; case 1: return lhs[0] * rhs[1] + lhs[1] * rhs[3]; case 2: return lhs[2] * rhs[0] + lhs[3] * rhs[2]; case 3: return lhs[2] * rhs[1] + lhs[3] * rhs[3]; case 4: return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4]; case 5: return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5]; default: return 0.f; } } }; inline MatrixMultiply operator *(Matrix const& lhs, Matrix const& rhs) { return MatrixMultiply(lhs, rhs); } template inline MatrixMultiply, Matrix> operator *(MatrixMultiply const& lhs, Matrix const& rhs) { return MatrixMultiply, Matrix>(lhs, rhs); } } }