// Copyright (c) 2016-2018 Kiwano - Nomango // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #pragma once #include "Vec2.hpp" #include "Rect.hpp" #include namespace kiwano { namespace math { struct Matrix { union { struct { float m[6]; // m[3][2] }; struct { float _11, _12, _21, _22, _31, _32; }; }; Matrix() : _11(1.f), _12(0.f) , _21(0.f), _22(1.f) , _31(0.f), _32(0.f) { } Matrix(float _11, float _12, float _21, float _22, float _31, float _32) : _11(_11), _12(_12), _21(_21), _22(_22), _31(_31), _32(_32) { } explicit Matrix(const float* p) { for (int i = 0; i < 6; i++) m[i] = p[i]; } Matrix(Matrix const& other) : _11(other._11), _12(other._12) , _21(other._21), _22(other._22) , _31(other._31), _32(other._32) { } template Matrix(T const& other) { for (int i = 0; i < 6; i++) m[i] = other[i]; } inline void Identity() { _11 = 1.f; _12 = 0.f; _21 = 0.f; _12 = 1.f; _31 = 0.f; _32 = 0.f; } inline Vec2 Transform(const Vec2& v) const { return Vec2( v.x * _11 + v.y * _21 + _31, v.x * _12 + v.y * _22 + _32 ); } Rect Transform(const Rect & rect) const { Vec2 top_left = Transform(rect.GetLeftTop()); Vec2 top_right = Transform(rect.GetRightTop()); Vec2 bottom_left = Transform(rect.GetLeftBottom()); Vec2 bottom_right = Transform(rect.GetRightBottom()); float left = std::min(std::min(top_left.x, top_right.x), std::min(bottom_left.x, bottom_right.x)); float right = std::max(std::max(top_left.x, top_right.x), std::max(bottom_left.x, bottom_right.x)); float top = std::min(std::min(top_left.y, top_right.y), std::min(bottom_left.y, bottom_right.y)); float bottom = std::max(std::max(top_left.y, top_right.y), std::max(bottom_left.y, bottom_right.y)); return Rect{ left, top, (right - left), (bottom - top) }; } inline void Translate(const Vec2& v) { _31 += _11 * v.x + _21 * v.y; _32 += _12 * v.x + _22 * v.y; } inline float operator [](unsigned int index) const { return m[index]; } template inline Matrix& operator =(T const& other) { for (int i = 0; i < 6; i++) m[i] = other[i]; return *this; } inline float Determinant() const { return (_11 * _22) - (_12 * _21); } inline bool IsIdentity() const { return _11 == 1.f && _12 == 0.f && _21 == 0.f && _22 == 1.f && _31 == 0.f && _32 == 0.f; } inline bool IsInvertible() const { return 0 != Determinant(); } static inline Matrix Translation(const Vec2& v) { return Matrix( 1.f, 0.f, 0.f, 1.f, v.x, v.y ); } static inline Matrix Translation( float x, float y) { return Translation(Vec2(x, y)); } static inline Matrix Scaling( const Vec2& v, const Vec2& center = Vec2()) { return Matrix( v.x, 0.f, 0.f, v.y, center.x - v.x * center.x, center.y - v.y * center.y ); } static inline Matrix Scaling( float x, float y, const Vec2& center = Vec2()) { return Scaling(Vec2(x, y), center); } static inline Matrix Rotation( float angle, const Vec2& center = Vec2()) { float s = math::Sin(angle); float c = math::Cos(angle); return Matrix( c, s, -s, c, center.x * (1 - c) + center.y * s, center.y * (1 - c) - center.x * s ); } static inline Matrix Skewing( float angle_x, float angle_y, const Vec2& center = Vec2()) { float tx = math::Tan(angle_x); float ty = math::Tan(angle_y); return Matrix( 1.f, -ty, -tx, 1.f, center.y * tx, center.x * ty ); } static inline Matrix Invert(Matrix const& matrix) { float det = 1.f / matrix.Determinant(); return Matrix( det * matrix._22, -det * matrix._12, -det * matrix._21, det * matrix._11, det * (matrix._21 * matrix._32 - matrix._22 * matrix._31), det * (matrix._12 * matrix._31 - matrix._11 * matrix._32) ); } }; // Use template expression to optimize matrix multiply template struct MatrixMultiply { L const& lhs; R const& rhs; MatrixMultiply(L const& lhs, R const& rhs) : lhs(lhs) , rhs(rhs) {} inline float operator [](unsigned int index) const { switch (index) { case 0: return lhs[0] * rhs[0] + lhs[1] * rhs[2]; case 1: return lhs[0] * rhs[1] + lhs[1] * rhs[3]; case 2: return lhs[2] * rhs[0] + lhs[3] * rhs[2]; case 3: return lhs[2] * rhs[1] + lhs[3] * rhs[3]; case 4: return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4]; case 5: return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5]; default: return 0.f; } } }; inline MatrixMultiply operator *(Matrix const& lhs, Matrix const& rhs) { return MatrixMultiply(lhs, rhs); } template inline MatrixMultiply, Matrix> operator *(MatrixMultiply const& lhs, Matrix const& rhs) { return MatrixMultiply, Matrix>(lhs, rhs); } } }