280 lines
6.0 KiB
C++
280 lines
6.0 KiB
C++
// Copyright (c) 2016-2018 Easy2D - Nomango
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
// THE SOFTWARE.
|
|
|
|
#pragma once
|
|
#include "vector.hpp"
|
|
#include <d2d1.h>
|
|
|
|
namespace easy2d
|
|
{
|
|
namespace math
|
|
{
|
|
class Matrix;
|
|
|
|
template <typename L, typename R>
|
|
struct MatrixMultiply;
|
|
|
|
inline MatrixMultiply<Matrix, Matrix>
|
|
operator *(Matrix const& lhs, Matrix const& rhs);
|
|
|
|
template <typename L, typename R>
|
|
inline MatrixMultiply<MatrixMultiply<L, R>, Matrix>
|
|
operator *(MatrixMultiply<L, R> const& lhs, Matrix const& rhs);
|
|
|
|
|
|
class Matrix
|
|
{
|
|
union
|
|
{
|
|
struct
|
|
{
|
|
float m[6]; // m[3][2]
|
|
};
|
|
|
|
struct
|
|
{
|
|
float
|
|
_11, _12,
|
|
_21, _22,
|
|
_31, _32;
|
|
};
|
|
};
|
|
|
|
public:
|
|
Matrix()
|
|
: _11(1.f), _12(0.f)
|
|
, _21(0.f), _22(1.f)
|
|
, _31(0.f), _32(0.f)
|
|
{
|
|
}
|
|
|
|
Matrix(float _11, float _12, float _21, float _22, float _31, float _32)
|
|
: _11(_11), _12(_12), _21(_21), _22(_22), _31(_31), _32(_32)
|
|
{
|
|
}
|
|
|
|
Matrix(const float* p)
|
|
{
|
|
for (int i = 0; i < 6; i++)
|
|
m[i] = p[i];
|
|
}
|
|
|
|
Matrix(Matrix const& other)
|
|
: _11(other._11), _12(other._12)
|
|
, _21(other._21), _22(other._22)
|
|
, _31(other._31), _32(other._32)
|
|
{
|
|
}
|
|
|
|
template <typename T>
|
|
Matrix(T const& other)
|
|
{
|
|
for (int i = 0; i < 6; i++)
|
|
m[i] = other[i];
|
|
}
|
|
|
|
inline float operator [](unsigned int index) const
|
|
{
|
|
return m[index];
|
|
}
|
|
|
|
template <typename T>
|
|
inline Matrix& operator =(T const& other)
|
|
{
|
|
for (int i = 0; i < 6; i++)
|
|
m[i] = other[i];
|
|
return *this;
|
|
}
|
|
|
|
inline Matrix& Identity()
|
|
{
|
|
_11 = 1.f; _12 = 0.f;
|
|
_21 = 0.f; _12 = 1.f;
|
|
_31 = 0.f; _32 = 0.f;
|
|
return *this;
|
|
}
|
|
|
|
inline float Determinant() const
|
|
{
|
|
return (_11 * _22) - (_12 * _21);
|
|
}
|
|
|
|
inline bool IsIdentity() const
|
|
{
|
|
return _11 == 1.f && _12 == 0.f &&
|
|
_21 == 0.f && _22 == 1.f &&
|
|
_31 == 0.f && _32 == 0.f;
|
|
}
|
|
|
|
inline bool IsInvertible() const
|
|
{
|
|
return 0 != Determinant();
|
|
}
|
|
|
|
Vector2 Transform(const Vector2& v) const
|
|
{
|
|
return Vector2(
|
|
v.x * _11 + v.y * _21 + _31,
|
|
v.x * _12 + v.y * _22 + _32
|
|
);
|
|
}
|
|
|
|
void Translate(const Vector2& v)
|
|
{
|
|
_31 += _11 * v.x + _21 * v.y;
|
|
_32 += _12 * v.x + _22 * v.y;
|
|
}
|
|
|
|
inline operator D2D1_MATRIX_3X2_F const& () const
|
|
{
|
|
return reinterpret_cast<D2D1_MATRIX_3X2_F const&>(*this);
|
|
}
|
|
|
|
inline operator D2D1_MATRIX_3X2_F& ()
|
|
{
|
|
return reinterpret_cast<D2D1_MATRIX_3X2_F&>(*this);
|
|
}
|
|
|
|
static Matrix Translation(const Vector2& v)
|
|
{
|
|
return Matrix(
|
|
1.f, 0.f,
|
|
0.f, 1.f,
|
|
v.x, v.y
|
|
);
|
|
}
|
|
|
|
static Matrix Translation(
|
|
float x,
|
|
float y)
|
|
{
|
|
return Translation(Vector2(x, y));
|
|
}
|
|
|
|
static Matrix Scaling(
|
|
const Vector2& v,
|
|
const Vector2& center = Vector2())
|
|
{
|
|
return Matrix(
|
|
v.x, 0.f,
|
|
0.f, v.y,
|
|
center.x - v.x * center.x,
|
|
center.y - v.y * center.y
|
|
);
|
|
}
|
|
|
|
static Matrix Scaling(
|
|
float x,
|
|
float y,
|
|
const Vector2& center = Vector2())
|
|
{
|
|
return Scaling(Vector2(x, y), center);
|
|
}
|
|
|
|
static Matrix Rotation(
|
|
float angle,
|
|
const Vector2& center = Vector2())
|
|
{
|
|
float s = math::Sin(angle);
|
|
float c = math::Cos(angle);
|
|
return Matrix(
|
|
c, s,
|
|
-s, c,
|
|
center.x * (1 - c) + center.y * s,
|
|
center.y * (1 - c) - center.x * s
|
|
);
|
|
}
|
|
|
|
static Matrix Skewing(
|
|
float angle_x,
|
|
float angle_y,
|
|
const Vector2& center = Vector2())
|
|
{
|
|
float tx = math::Tan(angle_x);
|
|
float ty = math::Tan(angle_y);
|
|
return Matrix(
|
|
1.f, -ty,
|
|
-tx, 1.f,
|
|
center.y * tx, center.x * ty
|
|
);
|
|
}
|
|
|
|
static Matrix Invert(Matrix const& matrix)
|
|
{
|
|
float det = 1.f / matrix.Determinant();
|
|
|
|
return Matrix(
|
|
det * matrix._22,
|
|
-det * matrix._12,
|
|
-det * matrix._21,
|
|
det * matrix._11,
|
|
det * (matrix._21 * matrix._32 - matrix._22 * matrix._31),
|
|
det * (matrix._12 * matrix._31 - matrix._11 * matrix._32)
|
|
);
|
|
}
|
|
};
|
|
|
|
|
|
template <typename L, typename R>
|
|
struct MatrixMultiply
|
|
{
|
|
L const& lhs;
|
|
R const& rhs;
|
|
|
|
MatrixMultiply(L const& lhs, R const& rhs)
|
|
: lhs(lhs)
|
|
, rhs(rhs)
|
|
{}
|
|
|
|
inline float operator [](unsigned int index) const
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0:
|
|
return lhs[0] * rhs[0] + lhs[1] * rhs[2];
|
|
case 1:
|
|
return lhs[0] * rhs[1] + lhs[1] * rhs[3];
|
|
case 2:
|
|
return lhs[2] * rhs[0] + lhs[3] * rhs[2];
|
|
case 3:
|
|
return lhs[2] * rhs[1] + lhs[3] * rhs[3];
|
|
case 4:
|
|
return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4];
|
|
case 5:
|
|
return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5];
|
|
default:
|
|
return 0.f;
|
|
}
|
|
}
|
|
};
|
|
|
|
inline MatrixMultiply<Matrix, Matrix> operator *(Matrix const& lhs, Matrix const& rhs)
|
|
{
|
|
return MatrixMultiply<Matrix, Matrix>(lhs, rhs);
|
|
}
|
|
|
|
template <typename L, typename R>
|
|
inline MatrixMultiply<MatrixMultiply<L, R>, Matrix> operator *(MatrixMultiply<L, R> const& lhs, Matrix const& rhs)
|
|
{
|
|
return MatrixMultiply<MatrixMultiply<L, R>, Matrix>(lhs, rhs);
|
|
}
|
|
}
|
|
}
|