738 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			738 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
| * Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
 | |
| *
 | |
| * This software is provided 'as-is', without any express or implied
 | |
| * warranty.  In no event will the authors be held liable for any damages
 | |
| * arising from the use of this software.
 | |
| * Permission is granted to anyone to use this software for any purpose,
 | |
| * including commercial applications, and to alter it and redistribute it
 | |
| * freely, subject to the following restrictions:
 | |
| * 1. The origin of this software must not be misrepresented; you must not
 | |
| * claim that you wrote the original software. If you use this software
 | |
| * in a product, an acknowledgment in the product documentation would be
 | |
| * appreciated but is not required.
 | |
| * 2. Altered source versions must be plainly marked as such, and must not be
 | |
| * misrepresented as being the original software.
 | |
| * 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #include "Box2D/Collision/b2Distance.h"
 | |
| #include "Box2D/Collision/Shapes/b2CircleShape.h"
 | |
| #include "Box2D/Collision/Shapes/b2EdgeShape.h"
 | |
| #include "Box2D/Collision/Shapes/b2ChainShape.h"
 | |
| #include "Box2D/Collision/Shapes/b2PolygonShape.h"
 | |
| 
 | |
| // GJK using Voronoi regions (Christer Ericson) and Barycentric coordinates.
 | |
| int32 b2_gjkCalls, b2_gjkIters, b2_gjkMaxIters;
 | |
| 
 | |
| void b2DistanceProxy::Set(const b2Shape* shape, int32 index)
 | |
| {
 | |
| 	switch (shape->GetType())
 | |
| 	{
 | |
| 	case b2Shape::e_circle:
 | |
| 		{
 | |
| 			const b2CircleShape* circle = static_cast<const b2CircleShape*>(shape);
 | |
| 			m_vertices = &circle->m_p;
 | |
| 			m_count = 1;
 | |
| 			m_radius = circle->m_radius;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case b2Shape::e_polygon:
 | |
| 		{
 | |
| 			const b2PolygonShape* polygon = static_cast<const b2PolygonShape*>(shape);
 | |
| 			m_vertices = polygon->m_vertices;
 | |
| 			m_count = polygon->m_count;
 | |
| 			m_radius = polygon->m_radius;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case b2Shape::e_chain:
 | |
| 		{
 | |
| 			const b2ChainShape* chain = static_cast<const b2ChainShape*>(shape);
 | |
| 			b2Assert(0 <= index && index < chain->m_count);
 | |
| 
 | |
| 			m_buffer[0] = chain->m_vertices[index];
 | |
| 			if (index + 1 < chain->m_count)
 | |
| 			{
 | |
| 				m_buffer[1] = chain->m_vertices[index + 1];
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				m_buffer[1] = chain->m_vertices[0];
 | |
| 			}
 | |
| 
 | |
| 			m_vertices = m_buffer;
 | |
| 			m_count = 2;
 | |
| 			m_radius = chain->m_radius;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case b2Shape::e_edge:
 | |
| 		{
 | |
| 			const b2EdgeShape* edge = static_cast<const b2EdgeShape*>(shape);
 | |
| 			m_vertices = &edge->m_vertex1;
 | |
| 			m_count = 2;
 | |
| 			m_radius = edge->m_radius;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		b2Assert(false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void b2DistanceProxy::Set(const b2Vec2* vertices, int32 count, float32 radius)
 | |
| {
 | |
|     m_vertices = vertices;
 | |
|     m_count = count;
 | |
|     m_radius = radius;
 | |
| }
 | |
| 
 | |
| struct b2SimplexVertex
 | |
| {
 | |
| 	b2Vec2 wA;		// support point in proxyA
 | |
| 	b2Vec2 wB;		// support point in proxyB
 | |
| 	b2Vec2 w;		// wB - wA
 | |
| 	float32 a;		// barycentric coordinate for closest point
 | |
| 	int32 indexA;	// wA index
 | |
| 	int32 indexB;	// wB index
 | |
| };
 | |
| 
 | |
| struct b2Simplex
 | |
| {
 | |
| 	void ReadCache(	const b2SimplexCache* cache,
 | |
| 					const b2DistanceProxy* proxyA, const b2Transform& transformA,
 | |
| 					const b2DistanceProxy* proxyB, const b2Transform& transformB)
 | |
| 	{
 | |
| 		b2Assert(cache->count <= 3);
 | |
| 		
 | |
| 		// Copy data from cache.
 | |
| 		m_count = cache->count;
 | |
| 		b2SimplexVertex* vertices = &m_v1;
 | |
| 		for (int32 i = 0; i < m_count; ++i)
 | |
| 		{
 | |
| 			b2SimplexVertex* v = vertices + i;
 | |
| 			v->indexA = cache->indexA[i];
 | |
| 			v->indexB = cache->indexB[i];
 | |
| 			b2Vec2 wALocal = proxyA->GetVertex(v->indexA);
 | |
| 			b2Vec2 wBLocal = proxyB->GetVertex(v->indexB);
 | |
| 			v->wA = b2Mul(transformA, wALocal);
 | |
| 			v->wB = b2Mul(transformB, wBLocal);
 | |
| 			v->w = v->wB - v->wA;
 | |
| 			v->a = 0.0f;
 | |
| 		}
 | |
| 
 | |
| 		// Compute the new simplex metric, if it is substantially different than
 | |
| 		// old metric then flush the simplex.
 | |
| 		if (m_count > 1)
 | |
| 		{
 | |
| 			float32 metric1 = cache->metric;
 | |
| 			float32 metric2 = GetMetric();
 | |
| 			if (metric2 < 0.5f * metric1 || 2.0f * metric1 < metric2 || metric2 < b2_epsilon)
 | |
| 			{
 | |
| 				// Reset the simplex.
 | |
| 				m_count = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// If the cache is empty or invalid ...
 | |
| 		if (m_count == 0)
 | |
| 		{
 | |
| 			b2SimplexVertex* v = vertices + 0;
 | |
| 			v->indexA = 0;
 | |
| 			v->indexB = 0;
 | |
| 			b2Vec2 wALocal = proxyA->GetVertex(0);
 | |
| 			b2Vec2 wBLocal = proxyB->GetVertex(0);
 | |
| 			v->wA = b2Mul(transformA, wALocal);
 | |
| 			v->wB = b2Mul(transformB, wBLocal);
 | |
| 			v->w = v->wB - v->wA;
 | |
| 			v->a = 1.0f;
 | |
| 			m_count = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void WriteCache(b2SimplexCache* cache) const
 | |
| 	{
 | |
| 		cache->metric = GetMetric();
 | |
| 		cache->count = uint16(m_count);
 | |
| 		const b2SimplexVertex* vertices = &m_v1;
 | |
| 		for (int32 i = 0; i < m_count; ++i)
 | |
| 		{
 | |
| 			cache->indexA[i] = uint8(vertices[i].indexA);
 | |
| 			cache->indexB[i] = uint8(vertices[i].indexB);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	b2Vec2 GetSearchDirection() const
 | |
| 	{
 | |
| 		switch (m_count)
 | |
| 		{
 | |
| 		case 1:
 | |
| 			return -m_v1.w;
 | |
| 
 | |
| 		case 2:
 | |
| 			{
 | |
| 				b2Vec2 e12 = m_v2.w - m_v1.w;
 | |
| 				float32 sgn = b2Cross(e12, -m_v1.w);
 | |
| 				if (sgn > 0.0f)
 | |
| 				{
 | |
| 					// Origin is left of e12.
 | |
| 					return b2Cross(1.0f, e12);
 | |
| 				}
 | |
| 				else
 | |
| 				{
 | |
| 					// Origin is right of e12.
 | |
| 					return b2Cross(e12, 1.0f);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		default:
 | |
| 			b2Assert(false);
 | |
| 			return b2Vec2_zero;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	b2Vec2 GetClosestPoint() const
 | |
| 	{
 | |
| 		switch (m_count)
 | |
| 		{
 | |
| 		case 0:
 | |
| 			b2Assert(false);
 | |
| 			return b2Vec2_zero;
 | |
| 
 | |
| 		case 1:
 | |
| 			return m_v1.w;
 | |
| 
 | |
| 		case 2:
 | |
| 			return m_v1.a * m_v1.w + m_v2.a * m_v2.w;
 | |
| 
 | |
| 		case 3:
 | |
| 			return b2Vec2_zero;
 | |
| 
 | |
| 		default:
 | |
| 			b2Assert(false);
 | |
| 			return b2Vec2_zero;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void GetWitnessPoints(b2Vec2* pA, b2Vec2* pB) const
 | |
| 	{
 | |
| 		switch (m_count)
 | |
| 		{
 | |
| 		case 0:
 | |
| 			b2Assert(false);
 | |
| 			break;
 | |
| 
 | |
| 		case 1:
 | |
| 			*pA = m_v1.wA;
 | |
| 			*pB = m_v1.wB;
 | |
| 			break;
 | |
| 
 | |
| 		case 2:
 | |
| 			*pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA;
 | |
| 			*pB = m_v1.a * m_v1.wB + m_v2.a * m_v2.wB;
 | |
| 			break;
 | |
| 
 | |
| 		case 3:
 | |
| 			*pA = m_v1.a * m_v1.wA + m_v2.a * m_v2.wA + m_v3.a * m_v3.wA;
 | |
| 			*pB = *pA;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			b2Assert(false);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	float32 GetMetric() const
 | |
| 	{
 | |
| 		switch (m_count)
 | |
| 		{
 | |
| 		case 0:
 | |
| 			b2Assert(false);
 | |
| 			return 0.0f;
 | |
| 
 | |
| 		case 1:
 | |
| 			return 0.0f;
 | |
| 
 | |
| 		case 2:
 | |
| 			return b2Distance(m_v1.w, m_v2.w);
 | |
| 
 | |
| 		case 3:
 | |
| 			return b2Cross(m_v2.w - m_v1.w, m_v3.w - m_v1.w);
 | |
| 
 | |
| 		default:
 | |
| 			b2Assert(false);
 | |
| 			return 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void Solve2();
 | |
| 	void Solve3();
 | |
| 
 | |
| 	b2SimplexVertex m_v1, m_v2, m_v3;
 | |
| 	int32 m_count;
 | |
| };
 | |
| 
 | |
| 
 | |
| // Solve a line segment using barycentric coordinates.
 | |
| //
 | |
| // p = a1 * w1 + a2 * w2
 | |
| // a1 + a2 = 1
 | |
| //
 | |
| // The vector from the origin to the closest point on the line is
 | |
| // perpendicular to the line.
 | |
| // e12 = w2 - w1
 | |
| // dot(p, e) = 0
 | |
| // a1 * dot(w1, e) + a2 * dot(w2, e) = 0
 | |
| //
 | |
| // 2-by-2 linear system
 | |
| // [1      1     ][a1] = [1]
 | |
| // [w1.e12 w2.e12][a2] = [0]
 | |
| //
 | |
| // Define
 | |
| // d12_1 =  dot(w2, e12)
 | |
| // d12_2 = -dot(w1, e12)
 | |
| // d12 = d12_1 + d12_2
 | |
| //
 | |
| // Solution
 | |
| // a1 = d12_1 / d12
 | |
| // a2 = d12_2 / d12
 | |
| void b2Simplex::Solve2()
 | |
| {
 | |
| 	b2Vec2 w1 = m_v1.w;
 | |
| 	b2Vec2 w2 = m_v2.w;
 | |
| 	b2Vec2 e12 = w2 - w1;
 | |
| 
 | |
| 	// w1 region
 | |
| 	float32 d12_2 = -b2Dot(w1, e12);
 | |
| 	if (d12_2 <= 0.0f)
 | |
| 	{
 | |
| 		// a2 <= 0, so we clamp it to 0
 | |
| 		m_v1.a = 1.0f;
 | |
| 		m_count = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// w2 region
 | |
| 	float32 d12_1 = b2Dot(w2, e12);
 | |
| 	if (d12_1 <= 0.0f)
 | |
| 	{
 | |
| 		// a1 <= 0, so we clamp it to 0
 | |
| 		m_v2.a = 1.0f;
 | |
| 		m_count = 1;
 | |
| 		m_v1 = m_v2;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Must be in e12 region.
 | |
| 	float32 inv_d12 = 1.0f / (d12_1 + d12_2);
 | |
| 	m_v1.a = d12_1 * inv_d12;
 | |
| 	m_v2.a = d12_2 * inv_d12;
 | |
| 	m_count = 2;
 | |
| }
 | |
| 
 | |
| // Possible regions:
 | |
| // - points[2]
 | |
| // - edge points[0]-points[2]
 | |
| // - edge points[1]-points[2]
 | |
| // - inside the triangle
 | |
| void b2Simplex::Solve3()
 | |
| {
 | |
| 	b2Vec2 w1 = m_v1.w;
 | |
| 	b2Vec2 w2 = m_v2.w;
 | |
| 	b2Vec2 w3 = m_v3.w;
 | |
| 
 | |
| 	// Edge12
 | |
| 	// [1      1     ][a1] = [1]
 | |
| 	// [w1.e12 w2.e12][a2] = [0]
 | |
| 	// a3 = 0
 | |
| 	b2Vec2 e12 = w2 - w1;
 | |
| 	float32 w1e12 = b2Dot(w1, e12);
 | |
| 	float32 w2e12 = b2Dot(w2, e12);
 | |
| 	float32 d12_1 = w2e12;
 | |
| 	float32 d12_2 = -w1e12;
 | |
| 
 | |
| 	// Edge13
 | |
| 	// [1      1     ][a1] = [1]
 | |
| 	// [w1.e13 w3.e13][a3] = [0]
 | |
| 	// a2 = 0
 | |
| 	b2Vec2 e13 = w3 - w1;
 | |
| 	float32 w1e13 = b2Dot(w1, e13);
 | |
| 	float32 w3e13 = b2Dot(w3, e13);
 | |
| 	float32 d13_1 = w3e13;
 | |
| 	float32 d13_2 = -w1e13;
 | |
| 
 | |
| 	// Edge23
 | |
| 	// [1      1     ][a2] = [1]
 | |
| 	// [w2.e23 w3.e23][a3] = [0]
 | |
| 	// a1 = 0
 | |
| 	b2Vec2 e23 = w3 - w2;
 | |
| 	float32 w2e23 = b2Dot(w2, e23);
 | |
| 	float32 w3e23 = b2Dot(w3, e23);
 | |
| 	float32 d23_1 = w3e23;
 | |
| 	float32 d23_2 = -w2e23;
 | |
| 	
 | |
| 	// Triangle123
 | |
| 	float32 n123 = b2Cross(e12, e13);
 | |
| 
 | |
| 	float32 d123_1 = n123 * b2Cross(w2, w3);
 | |
| 	float32 d123_2 = n123 * b2Cross(w3, w1);
 | |
| 	float32 d123_3 = n123 * b2Cross(w1, w2);
 | |
| 
 | |
| 	// w1 region
 | |
| 	if (d12_2 <= 0.0f && d13_2 <= 0.0f)
 | |
| 	{
 | |
| 		m_v1.a = 1.0f;
 | |
| 		m_count = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// e12
 | |
| 	if (d12_1 > 0.0f && d12_2 > 0.0f && d123_3 <= 0.0f)
 | |
| 	{
 | |
| 		float32 inv_d12 = 1.0f / (d12_1 + d12_2);
 | |
| 		m_v1.a = d12_1 * inv_d12;
 | |
| 		m_v2.a = d12_2 * inv_d12;
 | |
| 		m_count = 2;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// e13
 | |
| 	if (d13_1 > 0.0f && d13_2 > 0.0f && d123_2 <= 0.0f)
 | |
| 	{
 | |
| 		float32 inv_d13 = 1.0f / (d13_1 + d13_2);
 | |
| 		m_v1.a = d13_1 * inv_d13;
 | |
| 		m_v3.a = d13_2 * inv_d13;
 | |
| 		m_count = 2;
 | |
| 		m_v2 = m_v3;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// w2 region
 | |
| 	if (d12_1 <= 0.0f && d23_2 <= 0.0f)
 | |
| 	{
 | |
| 		m_v2.a = 1.0f;
 | |
| 		m_count = 1;
 | |
| 		m_v1 = m_v2;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// w3 region
 | |
| 	if (d13_1 <= 0.0f && d23_1 <= 0.0f)
 | |
| 	{
 | |
| 		m_v3.a = 1.0f;
 | |
| 		m_count = 1;
 | |
| 		m_v1 = m_v3;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// e23
 | |
| 	if (d23_1 > 0.0f && d23_2 > 0.0f && d123_1 <= 0.0f)
 | |
| 	{
 | |
| 		float32 inv_d23 = 1.0f / (d23_1 + d23_2);
 | |
| 		m_v2.a = d23_1 * inv_d23;
 | |
| 		m_v3.a = d23_2 * inv_d23;
 | |
| 		m_count = 2;
 | |
| 		m_v1 = m_v3;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Must be in triangle123
 | |
| 	float32 inv_d123 = 1.0f / (d123_1 + d123_2 + d123_3);
 | |
| 	m_v1.a = d123_1 * inv_d123;
 | |
| 	m_v2.a = d123_2 * inv_d123;
 | |
| 	m_v3.a = d123_3 * inv_d123;
 | |
| 	m_count = 3;
 | |
| }
 | |
| 
 | |
| void b2Distance(b2DistanceOutput* output,
 | |
| 				b2SimplexCache* cache,
 | |
| 				const b2DistanceInput* input)
 | |
| {
 | |
| 	++b2_gjkCalls;
 | |
| 
 | |
| 	const b2DistanceProxy* proxyA = &input->proxyA;
 | |
| 	const b2DistanceProxy* proxyB = &input->proxyB;
 | |
| 
 | |
| 	b2Transform transformA = input->transformA;
 | |
| 	b2Transform transformB = input->transformB;
 | |
| 
 | |
| 	// Initialize the simplex.
 | |
| 	b2Simplex simplex;
 | |
| 	simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB);
 | |
| 
 | |
| 	// Get simplex vertices as an array.
 | |
| 	b2SimplexVertex* vertices = &simplex.m_v1;
 | |
| 	const int32 k_maxIters = 20;
 | |
| 
 | |
| 	// These store the vertices of the last simplex so that we
 | |
| 	// can check for duplicates and prevent cycling.
 | |
| 	int32 saveA[3], saveB[3];
 | |
| 	int32 saveCount = 0;
 | |
| 
 | |
| 	// Main iteration loop.
 | |
| 	int32 iter = 0;
 | |
| 	while (iter < k_maxIters)
 | |
| 	{
 | |
| 		// Copy simplex so we can identify duplicates.
 | |
| 		saveCount = simplex.m_count;
 | |
| 		for (int32 i = 0; i < saveCount; ++i)
 | |
| 		{
 | |
| 			saveA[i] = vertices[i].indexA;
 | |
| 			saveB[i] = vertices[i].indexB;
 | |
| 		}
 | |
| 
 | |
| 		switch (simplex.m_count)
 | |
| 		{
 | |
| 		case 1:
 | |
| 			break;
 | |
| 
 | |
| 		case 2:
 | |
| 			simplex.Solve2();
 | |
| 			break;
 | |
| 
 | |
| 		case 3:
 | |
| 			simplex.Solve3();
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			b2Assert(false);
 | |
| 		}
 | |
| 
 | |
| 		// If we have 3 points, then the origin is in the corresponding triangle.
 | |
| 		if (simplex.m_count == 3)
 | |
| 		{
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		// Get search direction.
 | |
| 		b2Vec2 d = simplex.GetSearchDirection();
 | |
| 
 | |
| 		// Ensure the search direction is numerically fit.
 | |
| 		if (d.LengthSquared() < b2_epsilon * b2_epsilon)
 | |
| 		{
 | |
| 			// The origin is probably contained by a line segment
 | |
| 			// or triangle. Thus the shapes are overlapped.
 | |
| 
 | |
| 			// We can't return zero here even though there may be overlap.
 | |
| 			// In case the simplex is a point, segment, or triangle it is difficult
 | |
| 			// to determine if the origin is contained in the CSO or very close to it.
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		// Compute a tentative new simplex vertex using support points.
 | |
| 		b2SimplexVertex* vertex = vertices + simplex.m_count;
 | |
| 		vertex->indexA = proxyA->GetSupport(b2MulT(transformA.q, -d));
 | |
| 		vertex->wA = b2Mul(transformA, proxyA->GetVertex(vertex->indexA));
 | |
| 		b2Vec2 wBLocal;
 | |
| 		vertex->indexB = proxyB->GetSupport(b2MulT(transformB.q, d));
 | |
| 		vertex->wB = b2Mul(transformB, proxyB->GetVertex(vertex->indexB));
 | |
| 		vertex->w = vertex->wB - vertex->wA;
 | |
| 
 | |
| 		// Iteration count is equated to the number of support point calls.
 | |
| 		++iter;
 | |
| 		++b2_gjkIters;
 | |
| 
 | |
| 		// Check for duplicate support points. This is the main termination criteria.
 | |
| 		bool duplicate = false;
 | |
| 		for (int32 i = 0; i < saveCount; ++i)
 | |
| 		{
 | |
| 			if (vertex->indexA == saveA[i] && vertex->indexB == saveB[i])
 | |
| 			{
 | |
| 				duplicate = true;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// If we found a duplicate support point we must exit to avoid cycling.
 | |
| 		if (duplicate)
 | |
| 		{
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		// New vertex is ok and needed.
 | |
| 		++simplex.m_count;
 | |
| 	}
 | |
| 
 | |
| 	b2_gjkMaxIters = b2Max(b2_gjkMaxIters, iter);
 | |
| 
 | |
| 	// Prepare output.
 | |
| 	simplex.GetWitnessPoints(&output->pointA, &output->pointB);
 | |
| 	output->distance = b2Distance(output->pointA, output->pointB);
 | |
| 	output->iterations = iter;
 | |
| 
 | |
| 	// Cache the simplex.
 | |
| 	simplex.WriteCache(cache);
 | |
| 
 | |
| 	// Apply radii if requested.
 | |
| 	if (input->useRadii)
 | |
| 	{
 | |
| 		float32 rA = proxyA->m_radius;
 | |
| 		float32 rB = proxyB->m_radius;
 | |
| 
 | |
| 		if (output->distance > rA + rB && output->distance > b2_epsilon)
 | |
| 		{
 | |
| 			// Shapes are still no overlapped.
 | |
| 			// Move the witness points to the outer surface.
 | |
| 			output->distance -= rA + rB;
 | |
| 			b2Vec2 normal = output->pointB - output->pointA;
 | |
| 			normal.Normalize();
 | |
| 			output->pointA += rA * normal;
 | |
| 			output->pointB -= rB * normal;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			// Shapes are overlapped when radii are considered.
 | |
| 			// Move the witness points to the middle.
 | |
| 			b2Vec2 p = 0.5f * (output->pointA + output->pointB);
 | |
| 			output->pointA = p;
 | |
| 			output->pointB = p;
 | |
| 			output->distance = 0.0f;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // GJK-raycast
 | |
| // Algorithm by Gino van den Bergen.
 | |
| // "Smooth Mesh Contacts with GJK" in Game Physics Pearls. 2010
 | |
| bool b2ShapeCast(b2ShapeCastOutput * output, const b2ShapeCastInput * input)
 | |
| {
 | |
|     output->iterations = 0;
 | |
|     output->lambda = 1.0f;
 | |
|     output->normal.SetZero();
 | |
|     output->point.SetZero();
 | |
| 
 | |
| 	const b2DistanceProxy* proxyA = &input->proxyA;
 | |
| 	const b2DistanceProxy* proxyB = &input->proxyB;
 | |
| 
 | |
|     float32 radiusA = b2Max(proxyA->m_radius, b2_polygonRadius);
 | |
|     float32 radiusB = b2Max(proxyB->m_radius, b2_polygonRadius);
 | |
|     float32 radius = radiusA + radiusB;
 | |
| 
 | |
| 	b2Transform xfA = input->transformA;
 | |
| 	b2Transform xfB = input->transformB;
 | |
| 
 | |
| 	b2Vec2 r = input->translationB;
 | |
| 	b2Vec2 n(0.0f, 0.0f);
 | |
| 	float32 lambda = 0.0f;
 | |
| 
 | |
| 	// Initial simplex
 | |
| 	b2Simplex simplex;
 | |
| 	simplex.m_count = 0;
 | |
| 
 | |
| 	// Get simplex vertices as an array.
 | |
| 	b2SimplexVertex* vertices = &simplex.m_v1;
 | |
| 
 | |
| 	// Get support point in -r direction
 | |
| 	int32 indexA = proxyA->GetSupport(b2MulT(xfA.q, -r));
 | |
| 	b2Vec2 wA = b2Mul(xfA, proxyA->GetVertex(indexA));
 | |
| 	int32 indexB = proxyB->GetSupport(b2MulT(xfB.q, r));
 | |
| 	b2Vec2 wB = b2Mul(xfB, proxyB->GetVertex(indexB));
 | |
|     b2Vec2 v = wA - wB;
 | |
| 
 | |
|     // Sigma is the target distance between polygons
 | |
|     float32 sigma = b2Max(b2_polygonRadius, radius - b2_polygonRadius);
 | |
| 	const float32 tolerance = 0.5f * b2_linearSlop;
 | |
| 
 | |
| 	// Main iteration loop.
 | |
| 	const int32 k_maxIters = 20;
 | |
| 	int32 iter = 0;
 | |
| 	while (iter < k_maxIters && b2Abs(v.Length() - sigma) > tolerance)
 | |
| 	{
 | |
| 		b2Assert(simplex.m_count < 3);
 | |
| 
 | |
|         output->iterations += 1;
 | |
| 
 | |
| 		// Support in direction -v (A - B)
 | |
| 		indexA = proxyA->GetSupport(b2MulT(xfA.q, -v));
 | |
| 		wA = b2Mul(xfA, proxyA->GetVertex(indexA));
 | |
| 		indexB = proxyB->GetSupport(b2MulT(xfB.q, v));
 | |
| 		wB = b2Mul(xfB, proxyB->GetVertex(indexB));
 | |
|         b2Vec2 p = wA - wB;
 | |
| 
 | |
|         // -v is a normal at p
 | |
|         v.Normalize();
 | |
| 
 | |
|         // Intersect ray with plane
 | |
| 		float32 vp = b2Dot(v, p);
 | |
|         float32 vr = b2Dot(v, r);
 | |
| 		if (vp - sigma > lambda * vr)
 | |
| 		{
 | |
| 			if (vr <= 0.0f)
 | |
| 			{
 | |
| 				return false;
 | |
| 			}
 | |
| 
 | |
| 			lambda = (vp - sigma) / vr;
 | |
| 			if (lambda > 1.0f)
 | |
| 			{
 | |
| 				return false;
 | |
| 			}
 | |
| 
 | |
|             n = -v;
 | |
|             simplex.m_count = 0;
 | |
| 		}
 | |
| 
 | |
|         // Reverse simplex since it works with B - A.
 | |
|         // Shift by lambda * r because we want the closest point to the current clip point.
 | |
|         // Note that the support point p is not shifted because we want the plane equation
 | |
|         // to be formed in unshifted space.
 | |
| 		b2SimplexVertex* vertex = vertices + simplex.m_count;
 | |
| 		vertex->indexA = indexB;
 | |
| 		vertex->wA = wB + lambda * r;
 | |
| 		vertex->indexB = indexA;
 | |
| 		vertex->wB = wA;
 | |
| 		vertex->w = vertex->wB - vertex->wA;
 | |
| 		vertex->a = 1.0f;
 | |
| 		simplex.m_count += 1;
 | |
| 
 | |
| 		switch (simplex.m_count)
 | |
| 		{
 | |
| 		case 1:
 | |
| 			break;
 | |
| 
 | |
| 		case 2:
 | |
| 			simplex.Solve2();
 | |
| 			break;
 | |
| 
 | |
| 		case 3:
 | |
| 			simplex.Solve3();
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			b2Assert(false);
 | |
| 		}
 | |
| 		
 | |
| 		// If we have 3 points, then the origin is in the corresponding triangle.
 | |
| 		if (simplex.m_count == 3)
 | |
| 		{
 | |
| 			// Overlap
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		// Get search direction.
 | |
| 		v = simplex.GetClosestPoint();
 | |
| 
 | |
| 		// Iteration count is equated to the number of support point calls.
 | |
| 		++iter;
 | |
| 	}
 | |
| 
 | |
| 	// Prepare output.
 | |
| 	b2Vec2 pointA, pointB;
 | |
| 	simplex.GetWitnessPoints(&pointB, &pointA);
 | |
| 
 | |
| 	if (v.LengthSquared() > 0.0f)
 | |
| 	{
 | |
|         n = -v;
 | |
| 		n.Normalize();
 | |
| 	}
 | |
| 
 | |
|     output->point = pointA + radiusA * n;
 | |
| 	output->normal = n;
 | |
| 	output->lambda = lambda;
 | |
| 	output->iterations = iter;
 | |
| 	return true;
 | |
| }
 |