Magic_Game/core/math/Matrix.hpp

242 lines
5.4 KiB
C++

// Copyright (c) 2016-2018 Easy2D - Nomango
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "vector.hpp"
#include <d2d1.h>
namespace easy2d
{
namespace math
{
class Matrix;
template <typename L, typename R>
struct MatrixMultiply;
inline MatrixMultiply<Matrix, Matrix>
operator *(Matrix const& lhs, Matrix const& rhs);
template <typename L, typename R>
inline MatrixMultiply<MatrixMultiply<L, R>, Matrix>
operator *(MatrixMultiply<L, R> const& lhs, Matrix const& rhs);
class Matrix
{
float m[6]; // m[3][2]
public:
Matrix()
{
m[0] = 1.f; m[1] = 0.f;
m[2] = 0.f; m[3] = 1.f;
m[4] = 0.f; m[5] = 0.f;
}
Matrix(float val[6])
{
m[0] = val[0]; m[1] = val[1];
m[2] = val[2]; m[3] = val[3];
m[4] = val[4]; m[5] = val[5];
}
Matrix(float _11, float _12, float _21, float _22, float _31, float _32)
{
m[0] = _11; m[1] = _12;
m[2] = _21; m[3] = _22;
m[4] = _31; m[5] = _32;
}
Matrix(Matrix const& other)
{
m[0] = other.m[0]; m[1] = other.m[1];
m[2] = other.m[2]; m[3] = other.m[3];
m[4] = other.m[4]; m[5] = other.m[5];
}
template <typename T>
Matrix(T const& other)
{
m[0] = other[0]; m[1] = other[1];
m[2] = other[2]; m[3] = other[3];
m[4] = other[4]; m[5] = other[5];
}
inline float operator [](unsigned int index) const { return m[index]; }
template <typename T>
inline Matrix& operator =(T const& other)
{
m[0] = other[0]; m[1] = other[1];
m[2] = other[2]; m[3] = other[3];
m[4] = other[4]; m[5] = other[5];
return *this;
}
inline operator D2D1_MATRIX_3X2_F () const
{
return D2D1_MATRIX_3X2_F{
m[0], m[1],
m[2], m[3],
m[4], m[5]
};
}
inline Matrix& Identity()
{
m[0] = 1.f; m[1] = 0.f;
m[2] = 0.f; m[3] = 1.f;
m[4] = 0.f; m[5] = 0.f;
return *this;
}
inline float Determinant() const
{
return (m[0] * m[3]) - (m[1] * m[2]);
}
inline bool IsIdentity() const
{
return m[0] == 1.f && m[1] == 0.f &&
m[2] == 0.f && m[3] == 1.f &&
m[4] == 0.f && m[5] == 0.f;
}
Vector2 Transform(const Vector2& v) const
{
return Vector2(
v.x * m[0] + v.y * m[2] + m[4],
v.x * m[1] + v.y * m[3] + m[5]
);
}
static Matrix Translation(const Vector2& v)
{
return Matrix(
1.f, 0.f,
0.f, 1.f,
v.x, v.y
);
}
static Matrix Translation(
float x,
float y)
{
return Translation(Vector2(x, y));
}
static Matrix Scaling(
const Vector2& v,
const Vector2& center = Vector2())
{
return Matrix(
v.x, 0.f,
0.f, v.y,
center.x - v.x * center.x,
center.y - v.y * center.y
);
}
static Matrix Scaling(
float x,
float y,
const Vector2& center = Vector2())
{
return Scaling(Vector2(x, y), center);
}
static Matrix Rotation(
float angle,
const Vector2& center = Vector2())
{
float s = math::Sin(angle);
float c = math::Cos(angle);
return Matrix(
c, s,
-s, c,
center.x * (1 - c) + center.y * s,
center.y * (1 - c) - center.x * s
);
}
static Matrix Skewing(
float angle_x,
float angle_y,
const Vector2& center = Vector2())
{
float tx = math::Tan(angle_x);
float ty = math::Tan(angle_y);
return Matrix(
1.f, tx,
ty, 1.f,
-center.y * tx, -center.x * ty
);
}
};
template <typename L, typename R>
struct MatrixMultiply
{
L const& lhs;
R const& rhs;
MatrixMultiply(L const& lhs, R const& rhs)
: lhs(lhs)
, rhs(rhs)
{}
inline float operator [](unsigned int index) const
{
switch (index)
{
case 0:
return lhs[0] * rhs[0] + lhs[1] * rhs[2];
case 1:
return lhs[0] * rhs[1] + lhs[1] * rhs[3];
case 2:
return lhs[2] * rhs[0] + lhs[3] * rhs[2];
case 3:
return lhs[2] * rhs[1] + lhs[3] * rhs[3];
case 4:
return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4];
case 5:
return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5];
default:
return 0.f;
}
}
};
inline MatrixMultiply<Matrix, Matrix> operator *(Matrix const& lhs, Matrix const& rhs)
{
return MatrixMultiply<Matrix, Matrix>(lhs, rhs);
}
template <typename L, typename R>
inline MatrixMultiply<MatrixMultiply<L, R>, Matrix> operator *(MatrixMultiply<L, R> const& lhs, Matrix const& rhs)
{
return MatrixMultiply<MatrixMultiply<L, R>, Matrix>(lhs, rhs);
}
}
}