Magic_Game/kiwano/math/Matrix.hpp

332 lines
7.8 KiB
C++

// Copyright (c) 2016-2018 Kiwano - Nomango
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "Vec2.hpp"
#include "Rect.hpp"
#include <algorithm>
namespace kiwano
{
namespace math
{
template <typename _Ty, typename _Lty, typename _Rty>
struct MatrixMultiply;
template <typename _Ty>
struct MatrixT
{
using value_type = _Ty;
using vec2_type = Vec2T<value_type>;
using rect_type = RectT<value_type>;
union
{
struct
{
_Ty m[6]; // m[3][2]
};
struct
{
_Ty
_11, _12,
_21, _22,
_31, _32;
};
};
MatrixT()
: _11(1.f), _12(0.f)
, _21(0.f), _22(1.f)
, _31(0.f), _32(0.f)
{
}
MatrixT(value_type _11, value_type _12, value_type _21, value_type _22, value_type _31, value_type _32)
: _11(_11), _12(_12), _21(_21), _22(_22), _31(_31), _32(_32)
{
}
explicit MatrixT(const value_type* p)
{
for (int i = 0; i < 6; i++)
m[i] = p[i];
}
MatrixT(MatrixT const& other)
: _11(other._11), _12(other._12)
, _21(other._21), _22(other._22)
, _31(other._31), _32(other._32)
{
}
template <typename _MTy>
MatrixT(_MTy const& other)
{
for (int i = 0; i < 6; i++)
m[i] = other[i];
}
inline value_type operator [](unsigned int index) const
{
return m[index];
}
inline value_type& operator [](unsigned int index)
{
return m[index];
}
inline MatrixT& operator= (MatrixT const& other)
{
for (int i = 0; i < 6; i++)
m[i] = other[i];
return (*this);
}
template <typename _Lty, typename _Rty>
inline MatrixT& operator= (MatrixMultiply<value_type, _Lty, _Rty> const& other)
{
MatrixT result(other);
(*this) = result;
return (*this);
}
inline MatrixT& operator*= (MatrixT const& other)
{
return operator=((*this) * other);
}
inline void Identity()
{
_11 = 1.f; _12 = 0.f;
_21 = 0.f; _22 = 1.f;
_31 = 0.f; _32 = 0.f;
}
inline bool IsIdentity() const
{
return _11 == 1.f && _12 == 0.f &&
_21 == 0.f && _22 == 1.f &&
_31 == 0.f && _32 == 0.f;
}
inline MatrixT Invert() const
{
value_type det = 1.f / Determinant();
return MatrixT(
det * _22,
-det * _12,
-det * _21,
det * _11,
det * (_21 * _32 - _22 * _31),
det * (_12 * _31 - _11 * _32)
);
}
inline bool IsInvertible() const
{
return 0 != Determinant();
}
inline value_type Determinant() const
{
return (_11 * _22) - (_12 * _21);
}
inline vec2_type Transform(const vec2_type& v) const
{
return vec2_type(
v.x * _11 + v.y * _21 + _31,
v.x * _12 + v.y * _22 + _32
);
}
rect_type Transform(const rect_type & rect) const
{
vec2_type top_left = Transform(rect.GetLeftTop());
vec2_type top_right = Transform(rect.GetRightTop());
vec2_type bottom_left = Transform(rect.GetLeftBottom());
vec2_type bottom_right = Transform(rect.GetRightBottom());
value_type left = std::min(std::min(top_left.x, top_right.x), std::min(bottom_left.x, bottom_right.x));
value_type right = std::max(std::max(top_left.x, top_right.x), std::max(bottom_left.x, bottom_right.x));
value_type top = std::min(std::min(top_left.y, top_right.y), std::min(bottom_left.y, bottom_right.y));
value_type bottom = std::max(std::max(top_left.y, top_right.y), std::max(bottom_left.y, bottom_right.y));
return rect_type{ left, top, (right - left), (bottom - top) };
}
inline void Translate(const vec2_type& v)
{
_31 += _11 * v.x + _21 * v.y;
_32 += _12 * v.x + _22 * v.y;
}
static inline MatrixT Translation(const vec2_type& v)
{
return MatrixT(
1.f, 0.f,
0.f, 1.f,
v.x, v.y
);
}
static inline MatrixT Scaling(const vec2_type& v)
{
return MatrixT(
v.x, 0.f,
0.f, v.y,
0.f, 0.f
);
}
static inline MatrixT Scaling(
const vec2_type& v,
const vec2_type& center)
{
return MatrixT(
v.x, 0.f,
0.f, v.y,
center.x - v.x * center.x,
center.y - v.y * center.y
);
}
static inline MatrixT Rotation(value_type angle)
{
value_type s = math::Sin(angle);
value_type c = math::Cos(angle);
return MatrixT(
c, s,
-s, c,
0.f, 0.f
);
}
static inline MatrixT Rotation(
value_type angle,
const vec2_type& center)
{
value_type s = math::Sin(angle);
value_type c = math::Cos(angle);
return MatrixT(
c, s,
-s, c,
center.x * (1 - c) + center.y * s,
center.y * (1 - c) - center.x * s
);
}
static inline MatrixT SRT(const vec2_type& trans, const vec2_type& scale, value_type angle)
{
value_type s = math::Sin(angle);
value_type c = math::Cos(angle);
return MatrixT(
c * scale.x, s * scale.x,
-s * scale.y, c * scale.y,
trans.x, trans.y
);
}
static inline MatrixT Skewing(const vec2_type& angle)
{
value_type tx = math::Tan(angle.x);
value_type ty = math::Tan(angle.y);
return MatrixT(
1.f, -ty,
-tx, 1.f,
0.f, 0.f
);
}
static inline MatrixT Skewing(
const vec2_type& angle,
const vec2_type& center)
{
value_type tx = math::Tan(angle.x);
value_type ty = math::Tan(angle.y);
return MatrixT(
1.f, -ty,
-tx, 1.f,
center.y * tx, center.x * ty
);
}
};
// Use template expression to optimize matrix multiply
template <typename _Ty, typename _Lty, typename _Rty>
struct MatrixMultiply
{
_Lty const& lhs;
_Rty const& rhs;
MatrixMultiply(_Lty const& lhs, _Rty const& rhs)
: lhs(lhs)
, rhs(rhs)
{}
inline _Ty operator [](unsigned int index) const
{
switch (index)
{
case 0:
return lhs[0] * rhs[0] + lhs[1] * rhs[2];
case 1:
return lhs[0] * rhs[1] + lhs[1] * rhs[3];
case 2:
return lhs[2] * rhs[0] + lhs[3] * rhs[2];
case 3:
return lhs[2] * rhs[1] + lhs[3] * rhs[3];
case 4:
return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4];
case 5:
return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5];
default:
return 0.f;
}
}
};
template <typename _Ty>
inline
MatrixMultiply<_Ty, MatrixT<_Ty>, MatrixT<_Ty>>
operator *(MatrixT<_Ty> const& lhs, MatrixT<_Ty> const& rhs)
{
return MatrixMultiply<_Ty, MatrixT<_Ty>, MatrixT<_Ty>>(lhs, rhs);
}
template <typename _Ty, typename _Lty, typename _Rty>
inline
MatrixMultiply<_Ty, MatrixMultiply<_Ty, _Lty, _Rty>, MatrixT<_Ty>>
operator *(MatrixMultiply<_Ty, _Lty, _Rty> const& lhs, MatrixT<_Ty> const& rhs)
{
return MatrixMultiply<_Ty, MatrixMultiply<_Ty, _Lty, _Rty>, MatrixT<_Ty>>(lhs, rhs);
}
}
}
namespace kiwano
{
using Matrix = kiwano::math::MatrixT<float>;
}