Magic_Game/core/math/Matrix.hpp

197 lines
4.2 KiB
C++

// Copyright (c) 2016-2018 Easy2D - Nomango
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma once
#include "vector.hpp"
namespace easy2d
{
namespace math
{
class Matrix
{
float _11;
float _12;
float _21;
float _22;
float _31;
float _32;
public:
Matrix()
: _11(1.f)
, _12(0.f)
, _21(0.f)
, _22(1.f)
, _31(0.f)
, _32(0.f)
{
}
Matrix(
float _11,
float _12,
float _21,
float _22,
float _31,
float _32)
{
this->_11 = _11;
this->_12 = _12;
this->_21 = _21;
this->_22 = _22;
this->_31 = _31;
this->_32 = _32;
}
inline Matrix operator*(const Matrix &matrix) const
{
return Matrix(
_11 * matrix._11 + _12 * matrix._21,
_11 * matrix._12 + _12 * matrix._22,
_21 * matrix._11 + _22 * matrix._21,
_21 * matrix._12 + _22 * matrix._22,
_31 * matrix._11 + _32 * matrix._21 + matrix._31,
_31 * matrix._12 + _32 * matrix._22 + matrix._32
);
}
inline Matrix& Identity()
{
_11 = 1.f;
_12 = 0.f;
_21 = 0.f;
_22 = 1.f;
_31 = 0.f;
_32 = 0.f;
return *this;
}
inline Matrix& Translate(const Vector2& v)
{
*this = *this * Matrix::Translation(v);
return *this;
}
inline Matrix& Scale(const Vector2& v, const Vector2& center)
{
*this = *this * Matrix::Scaling(v, center);
return *this;
}
inline Matrix& Rotate(float angle, const Vector2& center)
{
*this = *this * Matrix::Rotation(angle, center);
return *this;
}
inline Matrix& Skew(float angle_x, float angle_y, const Vector2& center)
{
*this = *this * Matrix::Skewing(angle_x, angle_y, center);
return *this;
}
inline float Determinant() const
{
return (_11 * _22) - (_12 * _21);
}
inline bool IsIdentity() const
{
return _11 == 1.f && _12 == 0.f &&
_21 == 0.f && _22 == 1.f &&
_31 == 0.f && _32 == 0.f;
}
Vector2 Transform(const Vector2& v) const
{
return Vector2(
v.x * _11 + v.y * _21 + _31,
v.x * _12 + v.y * _22 + _32
);
}
static Matrix Translation(const Vector2& v)
{
return Matrix(
1.f, 0.f,
0.f, 1.f,
v.x, v.y
);
}
static Matrix Translation(
float x,
float y)
{
return Translation(Vector2(x, y));
}
static Matrix Scaling(
const Vector2& v,
const Vector2& center = Vector2())
{
return Matrix(
v.x, 0.f,
0.f, v.y,
center.x - v.x * center.x,
center.y - v.y * center.y
);
}
static Matrix Scaling(
float x,
float y,
const Vector2& center = Vector2())
{
return Scaling(Vector2(x, y), center);
}
static Matrix Rotation(
float angle,
const Vector2& center = Vector2())
{
float s = math::Sin(angle);
float c = math::Cos(angle);
return Matrix(
c, s,
-s, c,
center.x * (1 - c) + center.y * s,
center.y * (1 - c) - center.x * s
);
}
static Matrix Skewing(
float angle_x,
float angle_y,
const Vector2& center = Vector2())
{
float tx = math::Tan(angle_x);
float ty = math::Tan(angle_y);
return Matrix(
1.f, tx,
ty, 1.f,
-center.y * tx, -center.x * ty
);
}
};
}
}