242 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| /*
 | |
| * Copyright (c) 2007-2011 Erin Catto http://www.box2d.org
 | |
| *
 | |
| * This software is provided 'as-is', without any express or implied
 | |
| * warranty.  In no event will the authors be held liable for any damages
 | |
| * arising from the use of this software.
 | |
| * Permission is granted to anyone to use this software for any purpose,
 | |
| * including commercial applications, and to alter it and redistribute it
 | |
| * freely, subject to the following restrictions:
 | |
| * 1. The origin of this software must not be misrepresented; you must not
 | |
| * claim that you wrote the original software. If you use this software
 | |
| * in a product, an acknowledgment in the product documentation would be
 | |
| * appreciated but is not required.
 | |
| * 2. Altered source versions must be plainly marked as such, and must not be
 | |
| * misrepresented as being the original software.
 | |
| * 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #include "Box2D/Dynamics/Joints/b2RopeJoint.h"
 | |
| #include "Box2D/Dynamics/b2Body.h"
 | |
| #include "Box2D/Dynamics/b2TimeStep.h"
 | |
| 
 | |
| 
 | |
| // Limit:
 | |
| // C = norm(pB - pA) - L
 | |
| // u = (pB - pA) / norm(pB - pA)
 | |
| // Cdot = dot(u, vB + cross(wB, rB) - vA - cross(wA, rA))
 | |
| // J = [-u -cross(rA, u) u cross(rB, u)]
 | |
| // K = J * invM * JT
 | |
| //   = invMassA + invIA * cross(rA, u)^2 + invMassB + invIB * cross(rB, u)^2
 | |
| 
 | |
| b2RopeJoint::b2RopeJoint(const b2RopeJointDef* def)
 | |
| : b2Joint(def)
 | |
| {
 | |
| 	m_localAnchorA = def->localAnchorA;
 | |
| 	m_localAnchorB = def->localAnchorB;
 | |
| 
 | |
| 	m_maxLength = def->maxLength;
 | |
| 
 | |
| 	m_mass = 0.0f;
 | |
| 	m_impulse = 0.0f;
 | |
| 	m_state = e_inactiveLimit;
 | |
| 	m_length = 0.0f;
 | |
| }
 | |
| 
 | |
| void b2RopeJoint::InitVelocityConstraints(const b2SolverData& data)
 | |
| {
 | |
| 	m_indexA = m_bodyA->m_islandIndex;
 | |
| 	m_indexB = m_bodyB->m_islandIndex;
 | |
| 	m_localCenterA = m_bodyA->m_sweep.localCenter;
 | |
| 	m_localCenterB = m_bodyB->m_sweep.localCenter;
 | |
| 	m_invMassA = m_bodyA->m_invMass;
 | |
| 	m_invMassB = m_bodyB->m_invMass;
 | |
| 	m_invIA = m_bodyA->m_invI;
 | |
| 	m_invIB = m_bodyB->m_invI;
 | |
| 
 | |
| 	b2Vec2 cA = data.positions[m_indexA].c;
 | |
| 	float32 aA = data.positions[m_indexA].a;
 | |
| 	b2Vec2 vA = data.velocities[m_indexA].v;
 | |
| 	float32 wA = data.velocities[m_indexA].w;
 | |
| 
 | |
| 	b2Vec2 cB = data.positions[m_indexB].c;
 | |
| 	float32 aB = data.positions[m_indexB].a;
 | |
| 	b2Vec2 vB = data.velocities[m_indexB].v;
 | |
| 	float32 wB = data.velocities[m_indexB].w;
 | |
| 
 | |
| 	b2Rot qA(aA), qB(aB);
 | |
| 
 | |
| 	m_rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
 | |
| 	m_rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
 | |
| 	m_u = cB + m_rB - cA - m_rA;
 | |
| 
 | |
| 	m_length = m_u.Length();
 | |
| 
 | |
| 	float32 C = m_length - m_maxLength;
 | |
| 	if (C > 0.0f)
 | |
| 	{
 | |
| 		m_state = e_atUpperLimit;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_state = e_inactiveLimit;
 | |
| 	}
 | |
| 
 | |
| 	if (m_length > b2_linearSlop)
 | |
| 	{
 | |
| 		m_u *= 1.0f / m_length;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_u.SetZero();
 | |
| 		m_mass = 0.0f;
 | |
| 		m_impulse = 0.0f;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Compute effective mass.
 | |
| 	float32 crA = b2Cross(m_rA, m_u);
 | |
| 	float32 crB = b2Cross(m_rB, m_u);
 | |
| 	float32 invMass = m_invMassA + m_invIA * crA * crA + m_invMassB + m_invIB * crB * crB;
 | |
| 
 | |
| 	m_mass = invMass != 0.0f ? 1.0f / invMass : 0.0f;
 | |
| 
 | |
| 	if (data.step.warmStarting)
 | |
| 	{
 | |
| 		// Scale the impulse to support a variable time step.
 | |
| 		m_impulse *= data.step.dtRatio;
 | |
| 
 | |
| 		b2Vec2 P = m_impulse * m_u;
 | |
| 		vA -= m_invMassA * P;
 | |
| 		wA -= m_invIA * b2Cross(m_rA, P);
 | |
| 		vB += m_invMassB * P;
 | |
| 		wB += m_invIB * b2Cross(m_rB, P);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		m_impulse = 0.0f;
 | |
| 	}
 | |
| 
 | |
| 	data.velocities[m_indexA].v = vA;
 | |
| 	data.velocities[m_indexA].w = wA;
 | |
| 	data.velocities[m_indexB].v = vB;
 | |
| 	data.velocities[m_indexB].w = wB;
 | |
| }
 | |
| 
 | |
| void b2RopeJoint::SolveVelocityConstraints(const b2SolverData& data)
 | |
| {
 | |
| 	b2Vec2 vA = data.velocities[m_indexA].v;
 | |
| 	float32 wA = data.velocities[m_indexA].w;
 | |
| 	b2Vec2 vB = data.velocities[m_indexB].v;
 | |
| 	float32 wB = data.velocities[m_indexB].w;
 | |
| 
 | |
| 	// Cdot = dot(u, v + cross(w, r))
 | |
| 	b2Vec2 vpA = vA + b2Cross(wA, m_rA);
 | |
| 	b2Vec2 vpB = vB + b2Cross(wB, m_rB);
 | |
| 	float32 C = m_length - m_maxLength;
 | |
| 	float32 Cdot = b2Dot(m_u, vpB - vpA);
 | |
| 
 | |
| 	// Predictive constraint.
 | |
| 	if (C < 0.0f)
 | |
| 	{
 | |
| 		Cdot += data.step.inv_dt * C;
 | |
| 	}
 | |
| 
 | |
| 	float32 impulse = -m_mass * Cdot;
 | |
| 	float32 oldImpulse = m_impulse;
 | |
| 	m_impulse = b2Min(0.0f, m_impulse + impulse);
 | |
| 	impulse = m_impulse - oldImpulse;
 | |
| 
 | |
| 	b2Vec2 P = impulse * m_u;
 | |
| 	vA -= m_invMassA * P;
 | |
| 	wA -= m_invIA * b2Cross(m_rA, P);
 | |
| 	vB += m_invMassB * P;
 | |
| 	wB += m_invIB * b2Cross(m_rB, P);
 | |
| 
 | |
| 	data.velocities[m_indexA].v = vA;
 | |
| 	data.velocities[m_indexA].w = wA;
 | |
| 	data.velocities[m_indexB].v = vB;
 | |
| 	data.velocities[m_indexB].w = wB;
 | |
| }
 | |
| 
 | |
| bool b2RopeJoint::SolvePositionConstraints(const b2SolverData& data)
 | |
| {
 | |
| 	b2Vec2 cA = data.positions[m_indexA].c;
 | |
| 	float32 aA = data.positions[m_indexA].a;
 | |
| 	b2Vec2 cB = data.positions[m_indexB].c;
 | |
| 	float32 aB = data.positions[m_indexB].a;
 | |
| 
 | |
| 	b2Rot qA(aA), qB(aB);
 | |
| 
 | |
| 	b2Vec2 rA = b2Mul(qA, m_localAnchorA - m_localCenterA);
 | |
| 	b2Vec2 rB = b2Mul(qB, m_localAnchorB - m_localCenterB);
 | |
| 	b2Vec2 u = cB + rB - cA - rA;
 | |
| 
 | |
| 	float32 length = u.Normalize();
 | |
| 	float32 C = length - m_maxLength;
 | |
| 
 | |
| 	C = b2Clamp(C, 0.0f, b2_maxLinearCorrection);
 | |
| 
 | |
| 	float32 impulse = -m_mass * C;
 | |
| 	b2Vec2 P = impulse * u;
 | |
| 
 | |
| 	cA -= m_invMassA * P;
 | |
| 	aA -= m_invIA * b2Cross(rA, P);
 | |
| 	cB += m_invMassB * P;
 | |
| 	aB += m_invIB * b2Cross(rB, P);
 | |
| 
 | |
| 	data.positions[m_indexA].c = cA;
 | |
| 	data.positions[m_indexA].a = aA;
 | |
| 	data.positions[m_indexB].c = cB;
 | |
| 	data.positions[m_indexB].a = aB;
 | |
| 
 | |
| 	return length - m_maxLength < b2_linearSlop;
 | |
| }
 | |
| 
 | |
| b2Vec2 b2RopeJoint::GetAnchorA() const
 | |
| {
 | |
| 	return m_bodyA->GetWorldPoint(m_localAnchorA);
 | |
| }
 | |
| 
 | |
| b2Vec2 b2RopeJoint::GetAnchorB() const
 | |
| {
 | |
| 	return m_bodyB->GetWorldPoint(m_localAnchorB);
 | |
| }
 | |
| 
 | |
| b2Vec2 b2RopeJoint::GetReactionForce(float32 inv_dt) const
 | |
| {
 | |
| 	b2Vec2 F = (inv_dt * m_impulse) * m_u;
 | |
| 	return F;
 | |
| }
 | |
| 
 | |
| float32 b2RopeJoint::GetReactionTorque(float32 inv_dt) const
 | |
| {
 | |
| 	B2_NOT_USED(inv_dt);
 | |
| 	return 0.0f;
 | |
| }
 | |
| 
 | |
| float32 b2RopeJoint::GetMaxLength() const
 | |
| {
 | |
| 	return m_maxLength;
 | |
| }
 | |
| 
 | |
| b2LimitState b2RopeJoint::GetLimitState() const
 | |
| {
 | |
| 	return m_state;
 | |
| }
 | |
| 
 | |
| void b2RopeJoint::Dump()
 | |
| {
 | |
| 	int32 indexA = m_bodyA->m_islandIndex;
 | |
| 	int32 indexB = m_bodyB->m_islandIndex;
 | |
| 
 | |
| 	b2Log("  b2RopeJointDef jd;\n");
 | |
| 	b2Log("  jd.bodyA = bodies[%d];\n", indexA);
 | |
| 	b2Log("  jd.bodyB = bodies[%d];\n", indexB);
 | |
| 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected);
 | |
| 	b2Log("  jd.localAnchorA.Set(%.15lef, %.15lef);\n", m_localAnchorA.x, m_localAnchorA.y);
 | |
| 	b2Log("  jd.localAnchorB.Set(%.15lef, %.15lef);\n", m_localAnchorB.x, m_localAnchorB.y);
 | |
| 	b2Log("  jd.maxLength = %.15lef;\n", m_maxLength);
 | |
| 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
 | |
| }
 |