272 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C++
		
	
	
	
| // Copyright (c) 2016-2018 Kiwano - Nomango
 | |
| // 
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| // 
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| // 
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| 
 | |
| #pragma once
 | |
| #include "Vec2.hpp"
 | |
| #include "Rect.hpp"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace kiwano
 | |
| {
 | |
| 	namespace math
 | |
| 	{
 | |
| 		struct Matrix
 | |
| 		{
 | |
| 			union
 | |
| 			{
 | |
| 				struct
 | |
| 				{
 | |
| 					float m[6];  // m[3][2]
 | |
| 				};
 | |
| 				
 | |
| 				struct
 | |
| 				{
 | |
| 					float
 | |
| 						_11, _12,
 | |
| 						_21, _22,
 | |
| 						_31, _32;
 | |
| 				};
 | |
| 			};
 | |
| 
 | |
| 			Matrix()
 | |
| 				: _11(1.f), _12(0.f)
 | |
| 				, _21(0.f), _22(1.f)
 | |
| 				, _31(0.f), _32(0.f)
 | |
| 			{
 | |
| 			}
 | |
| 
 | |
| 			Matrix(float _11, float _12, float _21, float _22, float _31, float _32)
 | |
| 				: _11(_11), _12(_12), _21(_21), _22(_22), _31(_31), _32(_32)
 | |
| 			{
 | |
| 			}
 | |
| 
 | |
| 			explicit Matrix(const float* p)
 | |
| 			{
 | |
| 				for (int i = 0; i < 6; i++)
 | |
| 					m[i] = p[i];
 | |
| 			}
 | |
| 
 | |
| 			Matrix(Matrix const& other)
 | |
| 				: _11(other._11), _12(other._12)
 | |
| 				, _21(other._21), _22(other._22)
 | |
| 				, _31(other._31), _32(other._32)
 | |
| 			{
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			Matrix(T const& other)
 | |
| 			{
 | |
| 				for (int i = 0; i < 6; i++)
 | |
| 					m[i] = other[i];
 | |
| 			}
 | |
| 
 | |
| 			inline void Identity()
 | |
| 			{
 | |
| 				_11 = 1.f; _12 = 0.f;
 | |
| 				_21 = 0.f; _12 = 1.f;
 | |
| 				_31 = 0.f; _32 = 0.f;
 | |
| 			}
 | |
| 
 | |
| 			inline Vec2 Transform(const Vec2& v) const
 | |
| 			{
 | |
| 				return Vec2(
 | |
| 					v.x * _11 + v.y * _21 + _31,
 | |
| 					v.x * _12 + v.y * _22 + _32
 | |
| 				);
 | |
| 			}
 | |
| 
 | |
| 			Rect Transform(const Rect & rect) const
 | |
| 			{
 | |
| 				Vec2 top_left = Transform(rect.GetLeftTop());
 | |
| 				Vec2 top_right = Transform(rect.GetRightTop());
 | |
| 				Vec2 bottom_left = Transform(rect.GetLeftBottom());
 | |
| 				Vec2 bottom_right = Transform(rect.GetRightBottom());
 | |
| 
 | |
| 				float left = std::min(std::min(top_left.x, top_right.x), std::min(bottom_left.x, bottom_right.x));
 | |
| 				float right = std::max(std::max(top_left.x, top_right.x), std::max(bottom_left.x, bottom_right.x));
 | |
| 				float top = std::min(std::min(top_left.y, top_right.y), std::min(bottom_left.y, bottom_right.y));
 | |
| 				float bottom = std::max(std::max(top_left.y, top_right.y), std::max(bottom_left.y, bottom_right.y));
 | |
| 
 | |
| 				return Rect{ left, top, (right - left), (bottom - top) };
 | |
| 			}
 | |
| 
 | |
| 			inline void Translate(const Vec2& v)
 | |
| 			{
 | |
| 				_31 += _11 * v.x + _21 * v.y;
 | |
| 				_32 += _12 * v.x + _22 * v.y;
 | |
| 			}
 | |
| 
 | |
| 			inline float operator [](unsigned int index) const
 | |
| 			{
 | |
| 				return m[index];
 | |
| 			}
 | |
| 
 | |
| 			template <typename T>
 | |
| 			inline Matrix& operator =(T const& other)
 | |
| 			{
 | |
| 				for (int i = 0; i < 6; i++)
 | |
| 					m[i] = other[i];
 | |
| 				return *this;
 | |
| 			}
 | |
| 
 | |
| 			inline float Determinant() const
 | |
| 			{
 | |
| 				return (_11 * _22) - (_12 * _21);
 | |
| 			}
 | |
| 
 | |
| 			inline bool IsIdentity() const
 | |
| 			{
 | |
| 				return	_11 == 1.f && _12 == 0.f &&
 | |
| 						_21 == 0.f && _22 == 1.f &&
 | |
| 						_31 == 0.f && _32 == 0.f;
 | |
| 			}
 | |
| 
 | |
| 			inline bool IsInvertible() const
 | |
| 			{
 | |
| 				return 0 != Determinant();
 | |
| 			}
 | |
| 
 | |
| 			static inline Matrix Translation(const Vec2& v)
 | |
| 			{
 | |
| 				return Matrix(
 | |
| 					1.f, 0.f,
 | |
| 					0.f, 1.f,
 | |
| 					v.x, v.y
 | |
| 				);
 | |
| 			}
 | |
| 
 | |
| 			static inline Matrix Translation(
 | |
| 				float x,
 | |
| 				float y)
 | |
| 			{
 | |
| 				return Translation(Vec2(x, y));
 | |
| 			}
 | |
| 
 | |
| 			static inline Matrix Scaling(
 | |
| 				const Vec2& v,
 | |
| 				const Vec2& center = Vec2())
 | |
| 			{
 | |
| 				return Matrix(
 | |
| 					v.x, 0.f,
 | |
| 					0.f, v.y,
 | |
| 					center.x - v.x * center.x,
 | |
| 					center.y - v.y * center.y
 | |
| 				);
 | |
| 			}
 | |
| 
 | |
| 			static inline Matrix Scaling(
 | |
| 				float x,
 | |
| 				float y,
 | |
| 				const Vec2& center = Vec2())
 | |
| 			{
 | |
| 				return Scaling(Vec2(x, y), center);
 | |
| 			}
 | |
| 
 | |
| 			static inline Matrix Rotation(
 | |
| 				float angle,
 | |
| 				const Vec2& center = Vec2())
 | |
| 			{
 | |
| 				float s = math::Sin(angle);
 | |
| 				float c = math::Cos(angle);
 | |
| 				return Matrix(
 | |
| 					c, s,
 | |
| 					-s, c,
 | |
| 					center.x * (1 - c) + center.y * s,
 | |
| 					center.y * (1 - c) - center.x * s
 | |
| 				);
 | |
| 			}
 | |
| 
 | |
| 			static inline Matrix Skewing(
 | |
| 				float angle_x,
 | |
| 				float angle_y,
 | |
| 				const Vec2& center = Vec2())
 | |
| 			{
 | |
| 				float tx = math::Tan(angle_x);
 | |
| 				float ty = math::Tan(angle_y);
 | |
| 				return Matrix(
 | |
| 					1.f, -ty,
 | |
| 					-tx, 1.f,
 | |
| 					center.y * tx, center.x * ty
 | |
| 				);
 | |
| 			}
 | |
| 
 | |
| 			static inline Matrix Invert(Matrix const& matrix)
 | |
| 			{
 | |
| 				float det = 1.f / matrix.Determinant();
 | |
| 
 | |
| 				return Matrix(
 | |
| 					det * matrix._22,
 | |
| 					-det * matrix._12,
 | |
| 					-det * matrix._21,
 | |
| 					det * matrix._11,
 | |
| 					det * (matrix._21 * matrix._32 - matrix._22 * matrix._31),
 | |
| 					det * (matrix._12 * matrix._31 - matrix._11 * matrix._32)
 | |
| 				);
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 
 | |
| 		// Use template expression to optimize matrix multiply
 | |
| 		template <typename L, typename R>
 | |
| 		struct MatrixMultiply
 | |
| 		{
 | |
| 			L const& lhs;
 | |
| 			R const& rhs;
 | |
| 
 | |
| 			MatrixMultiply(L const& lhs, R const& rhs)
 | |
| 				: lhs(lhs)
 | |
| 				, rhs(rhs)
 | |
| 			{}
 | |
| 
 | |
| 			inline float operator [](unsigned int index) const
 | |
| 			{
 | |
| 				switch (index)
 | |
| 				{
 | |
| 				case 0:
 | |
| 					return lhs[0] * rhs[0] + lhs[1] * rhs[2];
 | |
| 				case 1:
 | |
| 					return lhs[0] * rhs[1] + lhs[1] * rhs[3];
 | |
| 				case 2:
 | |
| 					return lhs[2] * rhs[0] + lhs[3] * rhs[2];
 | |
| 				case 3:
 | |
| 					return lhs[2] * rhs[1] + lhs[3] * rhs[3];
 | |
| 				case 4:
 | |
| 					return lhs[4] * rhs[0] + lhs[5] * rhs[2] + rhs[4];
 | |
| 				case 5:
 | |
| 					return lhs[4] * rhs[1] + lhs[5] * rhs[3] + rhs[5];
 | |
| 				default:
 | |
| 					return 0.f;
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		inline MatrixMultiply<Matrix, Matrix> operator *(Matrix const& lhs, Matrix const& rhs)
 | |
| 		{
 | |
| 			return MatrixMultiply<Matrix, Matrix>(lhs, rhs);
 | |
| 		}
 | |
| 
 | |
| 		template <typename L, typename R>
 | |
| 		inline MatrixMultiply<MatrixMultiply<L, R>, Matrix> operator *(MatrixMultiply<L, R> const& lhs, Matrix const& rhs)
 | |
| 		{
 | |
| 			return MatrixMultiply<MatrixMultiply<L, R>, Matrix>(lhs, rhs);
 | |
| 		}
 | |
| 	}
 | |
| }
 |