1119 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			1119 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | //     __ _____ _____ _____
 | ||
|  | //  __|  |   __|     |   | |  JSON for Modern C++
 | ||
|  | // |  |  |__   |  |  | | | |  version 3.11.3
 | ||
|  | // |_____|_____|_____|_|___|  https://github.com/nlohmann/json
 | ||
|  | //
 | ||
|  | // SPDX-FileCopyrightText: 2009 Florian Loitsch <https://florian.loitsch.com/>
 | ||
|  | // SPDX-FileCopyrightText: 2013-2023 Niels Lohmann <https://nlohmann.me>
 | ||
|  | // SPDX-License-Identifier: MIT
 | ||
|  | 
 | ||
|  | #pragma once
 | ||
|  | 
 | ||
|  | #include <array> // array
 | ||
|  | #include <cmath>   // signbit, isfinite
 | ||
|  | #include <cstdint> // intN_t, uintN_t
 | ||
|  | #include <cstring> // memcpy, memmove
 | ||
|  | #include <limits> // numeric_limits
 | ||
|  | #include <type_traits> // conditional
 | ||
|  | 
 | ||
|  | #include <nlohmann/detail/macro_scope.hpp>
 | ||
|  | 
 | ||
|  | NLOHMANN_JSON_NAMESPACE_BEGIN | ||
|  | namespace detail | ||
|  | { | ||
|  | 
 | ||
|  | /*!
 | ||
|  | @brief implements the Grisu2 algorithm for binary to decimal floating-point | ||
|  | conversion. | ||
|  | 
 | ||
|  | This implementation is a slightly modified version of the reference | ||
|  | implementation which may be obtained from | ||
|  | http://florian.loitsch.com/publications (bench.tar.gz).
 | ||
|  | 
 | ||
|  | The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch. | ||
|  | 
 | ||
|  | For a detailed description of the algorithm see: | ||
|  | 
 | ||
|  | [1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with | ||
|  |     Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming | ||
|  |     Language Design and Implementation, PLDI 2010 | ||
|  | [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately", | ||
|  |     Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language | ||
|  |     Design and Implementation, PLDI 1996 | ||
|  | */ | ||
|  | namespace dtoa_impl | ||
|  | { | ||
|  | 
 | ||
|  | template<typename Target, typename Source> | ||
|  | Target reinterpret_bits(const Source source) | ||
|  | { | ||
|  |     static_assert(sizeof(Target) == sizeof(Source), "size mismatch"); | ||
|  | 
 | ||
|  |     Target target; | ||
|  |     std::memcpy(&target, &source, sizeof(Source)); | ||
|  |     return target; | ||
|  | } | ||
|  | 
 | ||
|  | struct diyfp // f * 2^e
 | ||
|  | { | ||
|  |     static constexpr int kPrecision = 64; // = q
 | ||
|  | 
 | ||
|  |     std::uint64_t f = 0; | ||
|  |     int e = 0; | ||
|  | 
 | ||
|  |     constexpr diyfp(std::uint64_t f_, int e_) noexcept : f(f_), e(e_) {} | ||
|  | 
 | ||
|  |     /*!
 | ||
|  |     @brief returns x - y | ||
|  |     @pre x.e == y.e and x.f >= y.f | ||
|  |     */ | ||
|  |     static diyfp sub(const diyfp& x, const diyfp& y) noexcept | ||
|  |     { | ||
|  |         JSON_ASSERT(x.e == y.e); | ||
|  |         JSON_ASSERT(x.f >= y.f); | ||
|  | 
 | ||
|  |         return {x.f - y.f, x.e}; | ||
|  |     } | ||
|  | 
 | ||
|  |     /*!
 | ||
|  |     @brief returns x * y | ||
|  |     @note The result is rounded. (Only the upper q bits are returned.) | ||
|  |     */ | ||
|  |     static diyfp mul(const diyfp& x, const diyfp& y) noexcept | ||
|  |     { | ||
|  |         static_assert(kPrecision == 64, "internal error"); | ||
|  | 
 | ||
|  |         // Computes:
 | ||
|  |         //  f = round((x.f * y.f) / 2^q)
 | ||
|  |         //  e = x.e + y.e + q
 | ||
|  | 
 | ||
|  |         // Emulate the 64-bit * 64-bit multiplication:
 | ||
|  |         //
 | ||
|  |         // p = u * v
 | ||
|  |         //   = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
 | ||
|  |         //   = (u_lo v_lo         ) + 2^32 ((u_lo v_hi         ) + (u_hi v_lo         )) + 2^64 (u_hi v_hi         )
 | ||
|  |         //   = (p0                ) + 2^32 ((p1                ) + (p2                )) + 2^64 (p3                )
 | ||
|  |         //   = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3                )
 | ||
|  |         //   = (p0_lo             ) + 2^32 (p0_hi + p1_lo + p2_lo                      ) + 2^64 (p1_hi + p2_hi + p3)
 | ||
|  |         //   = (p0_lo             ) + 2^32 (Q                                          ) + 2^64 (H                 )
 | ||
|  |         //   = (p0_lo             ) + 2^32 (Q_lo + 2^32 Q_hi                           ) + 2^64 (H                 )
 | ||
|  |         //
 | ||
|  |         // (Since Q might be larger than 2^32 - 1)
 | ||
|  |         //
 | ||
|  |         //   = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
 | ||
|  |         //
 | ||
|  |         // (Q_hi + H does not overflow a 64-bit int)
 | ||
|  |         //
 | ||
|  |         //   = p_lo + 2^64 p_hi
 | ||
|  | 
 | ||
|  |         const std::uint64_t u_lo = x.f & 0xFFFFFFFFu; | ||
|  |         const std::uint64_t u_hi = x.f >> 32u; | ||
|  |         const std::uint64_t v_lo = y.f & 0xFFFFFFFFu; | ||
|  |         const std::uint64_t v_hi = y.f >> 32u; | ||
|  | 
 | ||
|  |         const std::uint64_t p0 = u_lo * v_lo; | ||
|  |         const std::uint64_t p1 = u_lo * v_hi; | ||
|  |         const std::uint64_t p2 = u_hi * v_lo; | ||
|  |         const std::uint64_t p3 = u_hi * v_hi; | ||
|  | 
 | ||
|  |         const std::uint64_t p0_hi = p0 >> 32u; | ||
|  |         const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu; | ||
|  |         const std::uint64_t p1_hi = p1 >> 32u; | ||
|  |         const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu; | ||
|  |         const std::uint64_t p2_hi = p2 >> 32u; | ||
|  | 
 | ||
|  |         std::uint64_t Q = p0_hi + p1_lo + p2_lo; | ||
|  | 
 | ||
|  |         // The full product might now be computed as
 | ||
|  |         //
 | ||
|  |         // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
 | ||
|  |         // p_lo = p0_lo + (Q << 32)
 | ||
|  |         //
 | ||
|  |         // But in this particular case here, the full p_lo is not required.
 | ||
|  |         // Effectively we only need to add the highest bit in p_lo to p_hi (and
 | ||
|  |         // Q_hi + 1 does not overflow).
 | ||
|  | 
 | ||
|  |         Q += std::uint64_t{1} << (64u - 32u - 1u); // round, ties up
 | ||
|  | 
 | ||
|  |         const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u); | ||
|  | 
 | ||
|  |         return {h, x.e + y.e + 64}; | ||
|  |     } | ||
|  | 
 | ||
|  |     /*!
 | ||
|  |     @brief normalize x such that the significand is >= 2^(q-1) | ||
|  |     @pre x.f != 0 | ||
|  |     */ | ||
|  |     static diyfp normalize(diyfp x) noexcept | ||
|  |     { | ||
|  |         JSON_ASSERT(x.f != 0); | ||
|  | 
 | ||
|  |         while ((x.f >> 63u) == 0) | ||
|  |         { | ||
|  |             x.f <<= 1u; | ||
|  |             x.e--; | ||
|  |         } | ||
|  | 
 | ||
|  |         return x; | ||
|  |     } | ||
|  | 
 | ||
|  |     /*!
 | ||
|  |     @brief normalize x such that the result has the exponent E | ||
|  |     @pre e >= x.e and the upper e - x.e bits of x.f must be zero. | ||
|  |     */ | ||
|  |     static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept | ||
|  |     { | ||
|  |         const int delta = x.e - target_exponent; | ||
|  | 
 | ||
|  |         JSON_ASSERT(delta >= 0); | ||
|  |         JSON_ASSERT(((x.f << delta) >> delta) == x.f); | ||
|  | 
 | ||
|  |         return {x.f << delta, target_exponent}; | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | struct boundaries | ||
|  | { | ||
|  |     diyfp w; | ||
|  |     diyfp minus; | ||
|  |     diyfp plus; | ||
|  | }; | ||
|  | 
 | ||
|  | /*!
 | ||
|  | Compute the (normalized) diyfp representing the input number 'value' and its | ||
|  | boundaries. | ||
|  | 
 | ||
|  | @pre value must be finite and positive | ||
|  | */ | ||
|  | template<typename FloatType> | ||
|  | boundaries compute_boundaries(FloatType value) | ||
|  | { | ||
|  |     JSON_ASSERT(std::isfinite(value)); | ||
|  |     JSON_ASSERT(value > 0); | ||
|  | 
 | ||
|  |     // Convert the IEEE representation into a diyfp.
 | ||
|  |     //
 | ||
|  |     // If v is denormal:
 | ||
|  |     //      value = 0.F * 2^(1 - bias) = (          F) * 2^(1 - bias - (p-1))
 | ||
|  |     // If v is normalized:
 | ||
|  |     //      value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
 | ||
|  | 
 | ||
|  |     static_assert(std::numeric_limits<FloatType>::is_iec559, | ||
|  |                   "internal error: dtoa_short requires an IEEE-754 floating-point implementation"); | ||
|  | 
 | ||
|  |     constexpr int      kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
 | ||
|  |     constexpr int      kBias      = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1); | ||
|  |     constexpr int      kMinExp    = 1 - kBias; | ||
|  |     constexpr std::uint64_t kHiddenBit = std::uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
 | ||
|  | 
 | ||
|  |     using bits_type = typename std::conditional<kPrecision == 24, std::uint32_t, std::uint64_t >::type; | ||
|  | 
 | ||
|  |     const auto bits = static_cast<std::uint64_t>(reinterpret_bits<bits_type>(value)); | ||
|  |     const std::uint64_t E = bits >> (kPrecision - 1); | ||
|  |     const std::uint64_t F = bits & (kHiddenBit - 1); | ||
|  | 
 | ||
|  |     const bool is_denormal = E == 0; | ||
|  |     const diyfp v = is_denormal | ||
|  |                     ? diyfp(F, kMinExp) | ||
|  |                     : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias); | ||
|  | 
 | ||
|  |     // Compute the boundaries m- and m+ of the floating-point value
 | ||
|  |     // v = f * 2^e.
 | ||
|  |     //
 | ||
|  |     // Determine v- and v+, the floating-point predecessor and successor if v,
 | ||
|  |     // respectively.
 | ||
|  |     //
 | ||
|  |     //      v- = v - 2^e        if f != 2^(p-1) or e == e_min                (A)
 | ||
|  |     //         = v - 2^(e-1)    if f == 2^(p-1) and e > e_min                (B)
 | ||
|  |     //
 | ||
|  |     //      v+ = v + 2^e
 | ||
|  |     //
 | ||
|  |     // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
 | ||
|  |     // between m- and m+ round to v, regardless of how the input rounding
 | ||
|  |     // algorithm breaks ties.
 | ||
|  |     //
 | ||
|  |     //      ---+-------------+-------------+-------------+-------------+---  (A)
 | ||
|  |     //         v-            m-            v             m+            v+
 | ||
|  |     //
 | ||
|  |     //      -----------------+------+------+-------------+-------------+---  (B)
 | ||
|  |     //                       v-     m-     v             m+            v+
 | ||
|  | 
 | ||
|  |     const bool lower_boundary_is_closer = F == 0 && E > 1; | ||
|  |     const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1); | ||
|  |     const diyfp m_minus = lower_boundary_is_closer | ||
|  |                           ? diyfp(4 * v.f - 1, v.e - 2)  // (B)
 | ||
|  |                           : diyfp(2 * v.f - 1, v.e - 1); // (A)
 | ||
|  | 
 | ||
|  |     // Determine the normalized w+ = m+.
 | ||
|  |     const diyfp w_plus = diyfp::normalize(m_plus); | ||
|  | 
 | ||
|  |     // Determine w- = m- such that e_(w-) = e_(w+).
 | ||
|  |     const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e); | ||
|  | 
 | ||
|  |     return {diyfp::normalize(v), w_minus, w_plus}; | ||
|  | } | ||
|  | 
 | ||
|  | // Given normalized diyfp w, Grisu needs to find a (normalized) cached
 | ||
|  | // power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
 | ||
|  | // within a certain range [alpha, gamma] (Definition 3.2 from [1])
 | ||
|  | //
 | ||
|  | //      alpha <= e = e_c + e_w + q <= gamma
 | ||
|  | //
 | ||
|  | // or
 | ||
|  | //
 | ||
|  | //      f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
 | ||
|  | //                          <= f_c * f_w * 2^gamma
 | ||
|  | //
 | ||
|  | // Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
 | ||
|  | //
 | ||
|  | //      2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
 | ||
|  | //
 | ||
|  | // or
 | ||
|  | //
 | ||
|  | //      2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
 | ||
|  | //
 | ||
|  | // The choice of (alpha,gamma) determines the size of the table and the form of
 | ||
|  | // the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
 | ||
|  | // in practice:
 | ||
|  | //
 | ||
|  | // The idea is to cut the number c * w = f * 2^e into two parts, which can be
 | ||
|  | // processed independently: An integral part p1, and a fractional part p2:
 | ||
|  | //
 | ||
|  | //      f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
 | ||
|  | //              = (f div 2^-e) + (f mod 2^-e) * 2^e
 | ||
|  | //              = p1 + p2 * 2^e
 | ||
|  | //
 | ||
|  | // The conversion of p1 into decimal form requires a series of divisions and
 | ||
|  | // modulos by (a power of) 10. These operations are faster for 32-bit than for
 | ||
|  | // 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
 | ||
|  | // achieved by choosing
 | ||
|  | //
 | ||
|  | //      -e >= 32   or   e <= -32 := gamma
 | ||
|  | //
 | ||
|  | // In order to convert the fractional part
 | ||
|  | //
 | ||
|  | //      p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
 | ||
|  | //
 | ||
|  | // into decimal form, the fraction is repeatedly multiplied by 10 and the digits
 | ||
|  | // d[-i] are extracted in order:
 | ||
|  | //
 | ||
|  | //      (10 * p2) div 2^-e = d[-1]
 | ||
|  | //      (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
 | ||
|  | //
 | ||
|  | // The multiplication by 10 must not overflow. It is sufficient to choose
 | ||
|  | //
 | ||
|  | //      10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
 | ||
|  | //
 | ||
|  | // Since p2 = f mod 2^-e < 2^-e,
 | ||
|  | //
 | ||
|  | //      -e <= 60   or   e >= -60 := alpha
 | ||
|  | 
 | ||
|  | constexpr int kAlpha = -60; | ||
|  | constexpr int kGamma = -32; | ||
|  | 
 | ||
|  | struct cached_power // c = f * 2^e ~= 10^k
 | ||
|  | { | ||
|  |     std::uint64_t f; | ||
|  |     int e; | ||
|  |     int k; | ||
|  | }; | ||
|  | 
 | ||
|  | /*!
 | ||
|  | For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached | ||
|  | power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c | ||
|  | satisfies (Definition 3.2 from [1]) | ||
|  | 
 | ||
|  |      alpha <= e_c + e + q <= gamma. | ||
|  | */ | ||
|  | inline cached_power get_cached_power_for_binary_exponent(int e) | ||
|  | { | ||
|  |     // Now
 | ||
|  |     //
 | ||
|  |     //      alpha <= e_c + e + q <= gamma                                    (1)
 | ||
|  |     //      ==> f_c * 2^alpha <= c * 2^e * 2^q
 | ||
|  |     //
 | ||
|  |     // and since the c's are normalized, 2^(q-1) <= f_c,
 | ||
|  |     //
 | ||
|  |     //      ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
 | ||
|  |     //      ==> 2^(alpha - e - 1) <= c
 | ||
|  |     //
 | ||
|  |     // If c were an exact power of ten, i.e. c = 10^k, one may determine k as
 | ||
|  |     //
 | ||
|  |     //      k = ceil( log_10( 2^(alpha - e - 1) ) )
 | ||
|  |     //        = ceil( (alpha - e - 1) * log_10(2) )
 | ||
|  |     //
 | ||
|  |     // From the paper:
 | ||
|  |     // "In theory the result of the procedure could be wrong since c is rounded,
 | ||
|  |     //  and the computation itself is approximated [...]. In practice, however,
 | ||
|  |     //  this simple function is sufficient."
 | ||
|  |     //
 | ||
|  |     // For IEEE double precision floating-point numbers converted into
 | ||
|  |     // normalized diyfp's w = f * 2^e, with q = 64,
 | ||
|  |     //
 | ||
|  |     //      e >= -1022      (min IEEE exponent)
 | ||
|  |     //           -52        (p - 1)
 | ||
|  |     //           -52        (p - 1, possibly normalize denormal IEEE numbers)
 | ||
|  |     //           -11        (normalize the diyfp)
 | ||
|  |     //         = -1137
 | ||
|  |     //
 | ||
|  |     // and
 | ||
|  |     //
 | ||
|  |     //      e <= +1023      (max IEEE exponent)
 | ||
|  |     //           -52        (p - 1)
 | ||
|  |     //           -11        (normalize the diyfp)
 | ||
|  |     //         = 960
 | ||
|  |     //
 | ||
|  |     // This binary exponent range [-1137,960] results in a decimal exponent
 | ||
|  |     // range [-307,324]. One does not need to store a cached power for each
 | ||
|  |     // k in this range. For each such k it suffices to find a cached power
 | ||
|  |     // such that the exponent of the product lies in [alpha,gamma].
 | ||
|  |     // This implies that the difference of the decimal exponents of adjacent
 | ||
|  |     // table entries must be less than or equal to
 | ||
|  |     //
 | ||
|  |     //      floor( (gamma - alpha) * log_10(2) ) = 8.
 | ||
|  |     //
 | ||
|  |     // (A smaller distance gamma-alpha would require a larger table.)
 | ||
|  | 
 | ||
|  |     // NB:
 | ||
|  |     // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
 | ||
|  | 
 | ||
|  |     constexpr int kCachedPowersMinDecExp = -300; | ||
|  |     constexpr int kCachedPowersDecStep = 8; | ||
|  | 
 | ||
|  |     static constexpr std::array<cached_power, 79> kCachedPowers = | ||
|  |     { | ||
|  |         { | ||
|  |             { 0xAB70FE17C79AC6CA, -1060, -300 }, | ||
|  |             { 0xFF77B1FCBEBCDC4F, -1034, -292 }, | ||
|  |             { 0xBE5691EF416BD60C, -1007, -284 }, | ||
|  |             { 0x8DD01FAD907FFC3C,  -980, -276 }, | ||
|  |             { 0xD3515C2831559A83,  -954, -268 }, | ||
|  |             { 0x9D71AC8FADA6C9B5,  -927, -260 }, | ||
|  |             { 0xEA9C227723EE8BCB,  -901, -252 }, | ||
|  |             { 0xAECC49914078536D,  -874, -244 }, | ||
|  |             { 0x823C12795DB6CE57,  -847, -236 }, | ||
|  |             { 0xC21094364DFB5637,  -821, -228 }, | ||
|  |             { 0x9096EA6F3848984F,  -794, -220 }, | ||
|  |             { 0xD77485CB25823AC7,  -768, -212 }, | ||
|  |             { 0xA086CFCD97BF97F4,  -741, -204 }, | ||
|  |             { 0xEF340A98172AACE5,  -715, -196 }, | ||
|  |             { 0xB23867FB2A35B28E,  -688, -188 }, | ||
|  |             { 0x84C8D4DFD2C63F3B,  -661, -180 }, | ||
|  |             { 0xC5DD44271AD3CDBA,  -635, -172 }, | ||
|  |             { 0x936B9FCEBB25C996,  -608, -164 }, | ||
|  |             { 0xDBAC6C247D62A584,  -582, -156 }, | ||
|  |             { 0xA3AB66580D5FDAF6,  -555, -148 }, | ||
|  |             { 0xF3E2F893DEC3F126,  -529, -140 }, | ||
|  |             { 0xB5B5ADA8AAFF80B8,  -502, -132 }, | ||
|  |             { 0x87625F056C7C4A8B,  -475, -124 }, | ||
|  |             { 0xC9BCFF6034C13053,  -449, -116 }, | ||
|  |             { 0x964E858C91BA2655,  -422, -108 }, | ||
|  |             { 0xDFF9772470297EBD,  -396, -100 }, | ||
|  |             { 0xA6DFBD9FB8E5B88F,  -369,  -92 }, | ||
|  |             { 0xF8A95FCF88747D94,  -343,  -84 }, | ||
|  |             { 0xB94470938FA89BCF,  -316,  -76 }, | ||
|  |             { 0x8A08F0F8BF0F156B,  -289,  -68 }, | ||
|  |             { 0xCDB02555653131B6,  -263,  -60 }, | ||
|  |             { 0x993FE2C6D07B7FAC,  -236,  -52 }, | ||
|  |             { 0xE45C10C42A2B3B06,  -210,  -44 }, | ||
|  |             { 0xAA242499697392D3,  -183,  -36 }, | ||
|  |             { 0xFD87B5F28300CA0E,  -157,  -28 }, | ||
|  |             { 0xBCE5086492111AEB,  -130,  -20 }, | ||
|  |             { 0x8CBCCC096F5088CC,  -103,  -12 }, | ||
|  |             { 0xD1B71758E219652C,   -77,   -4 }, | ||
|  |             { 0x9C40000000000000,   -50,    4 }, | ||
|  |             { 0xE8D4A51000000000,   -24,   12 }, | ||
|  |             { 0xAD78EBC5AC620000,     3,   20 }, | ||
|  |             { 0x813F3978F8940984,    30,   28 }, | ||
|  |             { 0xC097CE7BC90715B3,    56,   36 }, | ||
|  |             { 0x8F7E32CE7BEA5C70,    83,   44 }, | ||
|  |             { 0xD5D238A4ABE98068,   109,   52 }, | ||
|  |             { 0x9F4F2726179A2245,   136,   60 }, | ||
|  |             { 0xED63A231D4C4FB27,   162,   68 }, | ||
|  |             { 0xB0DE65388CC8ADA8,   189,   76 }, | ||
|  |             { 0x83C7088E1AAB65DB,   216,   84 }, | ||
|  |             { 0xC45D1DF942711D9A,   242,   92 }, | ||
|  |             { 0x924D692CA61BE758,   269,  100 }, | ||
|  |             { 0xDA01EE641A708DEA,   295,  108 }, | ||
|  |             { 0xA26DA3999AEF774A,   322,  116 }, | ||
|  |             { 0xF209787BB47D6B85,   348,  124 }, | ||
|  |             { 0xB454E4A179DD1877,   375,  132 }, | ||
|  |             { 0x865B86925B9BC5C2,   402,  140 }, | ||
|  |             { 0xC83553C5C8965D3D,   428,  148 }, | ||
|  |             { 0x952AB45CFA97A0B3,   455,  156 }, | ||
|  |             { 0xDE469FBD99A05FE3,   481,  164 }, | ||
|  |             { 0xA59BC234DB398C25,   508,  172 }, | ||
|  |             { 0xF6C69A72A3989F5C,   534,  180 }, | ||
|  |             { 0xB7DCBF5354E9BECE,   561,  188 }, | ||
|  |             { 0x88FCF317F22241E2,   588,  196 }, | ||
|  |             { 0xCC20CE9BD35C78A5,   614,  204 }, | ||
|  |             { 0x98165AF37B2153DF,   641,  212 }, | ||
|  |             { 0xE2A0B5DC971F303A,   667,  220 }, | ||
|  |             { 0xA8D9D1535CE3B396,   694,  228 }, | ||
|  |             { 0xFB9B7CD9A4A7443C,   720,  236 }, | ||
|  |             { 0xBB764C4CA7A44410,   747,  244 }, | ||
|  |             { 0x8BAB8EEFB6409C1A,   774,  252 }, | ||
|  |             { 0xD01FEF10A657842C,   800,  260 }, | ||
|  |             { 0x9B10A4E5E9913129,   827,  268 }, | ||
|  |             { 0xE7109BFBA19C0C9D,   853,  276 }, | ||
|  |             { 0xAC2820D9623BF429,   880,  284 }, | ||
|  |             { 0x80444B5E7AA7CF85,   907,  292 }, | ||
|  |             { 0xBF21E44003ACDD2D,   933,  300 }, | ||
|  |             { 0x8E679C2F5E44FF8F,   960,  308 }, | ||
|  |             { 0xD433179D9C8CB841,   986,  316 }, | ||
|  |             { 0x9E19DB92B4E31BA9,  1013,  324 }, | ||
|  |         } | ||
|  |     }; | ||
|  | 
 | ||
|  |     // This computation gives exactly the same results for k as
 | ||
|  |     //      k = ceil((kAlpha - e - 1) * 0.30102999566398114)
 | ||
|  |     // for |e| <= 1500, but doesn't require floating-point operations.
 | ||
|  |     // NB: log_10(2) ~= 78913 / 2^18
 | ||
|  |     JSON_ASSERT(e >= -1500); | ||
|  |     JSON_ASSERT(e <=  1500); | ||
|  |     const int f = kAlpha - e - 1; | ||
|  |     const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0); | ||
|  | 
 | ||
|  |     const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep; | ||
|  |     JSON_ASSERT(index >= 0); | ||
|  |     JSON_ASSERT(static_cast<std::size_t>(index) < kCachedPowers.size()); | ||
|  | 
 | ||
|  |     const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)]; | ||
|  |     JSON_ASSERT(kAlpha <= cached.e + e + 64); | ||
|  |     JSON_ASSERT(kGamma >= cached.e + e + 64); | ||
|  | 
 | ||
|  |     return cached; | ||
|  | } | ||
|  | 
 | ||
|  | /*!
 | ||
|  | For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k. | ||
|  | For n == 0, returns 1 and sets pow10 := 1. | ||
|  | */ | ||
|  | inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10) | ||
|  | { | ||
|  |     // LCOV_EXCL_START
 | ||
|  |     if (n >= 1000000000) | ||
|  |     { | ||
|  |         pow10 = 1000000000; | ||
|  |         return 10; | ||
|  |     } | ||
|  |     // LCOV_EXCL_STOP
 | ||
|  |     if (n >= 100000000) | ||
|  |     { | ||
|  |         pow10 = 100000000; | ||
|  |         return  9; | ||
|  |     } | ||
|  |     if (n >= 10000000) | ||
|  |     { | ||
|  |         pow10 = 10000000; | ||
|  |         return  8; | ||
|  |     } | ||
|  |     if (n >= 1000000) | ||
|  |     { | ||
|  |         pow10 = 1000000; | ||
|  |         return  7; | ||
|  |     } | ||
|  |     if (n >= 100000) | ||
|  |     { | ||
|  |         pow10 = 100000; | ||
|  |         return  6; | ||
|  |     } | ||
|  |     if (n >= 10000) | ||
|  |     { | ||
|  |         pow10 = 10000; | ||
|  |         return  5; | ||
|  |     } | ||
|  |     if (n >= 1000) | ||
|  |     { | ||
|  |         pow10 = 1000; | ||
|  |         return  4; | ||
|  |     } | ||
|  |     if (n >= 100) | ||
|  |     { | ||
|  |         pow10 = 100; | ||
|  |         return  3; | ||
|  |     } | ||
|  |     if (n >= 10) | ||
|  |     { | ||
|  |         pow10 = 10; | ||
|  |         return  2; | ||
|  |     } | ||
|  | 
 | ||
|  |     pow10 = 1; | ||
|  |     return 1; | ||
|  | } | ||
|  | 
 | ||
|  | inline void grisu2_round(char* buf, int len, std::uint64_t dist, std::uint64_t delta, | ||
|  |                          std::uint64_t rest, std::uint64_t ten_k) | ||
|  | { | ||
|  |     JSON_ASSERT(len >= 1); | ||
|  |     JSON_ASSERT(dist <= delta); | ||
|  |     JSON_ASSERT(rest <= delta); | ||
|  |     JSON_ASSERT(ten_k > 0); | ||
|  | 
 | ||
|  |     //               <--------------------------- delta ---->
 | ||
|  |     //                                  <---- dist --------->
 | ||
|  |     // --------------[------------------+-------------------]--------------
 | ||
|  |     //               M-                 w                   M+
 | ||
|  |     //
 | ||
|  |     //                                  ten_k
 | ||
|  |     //                                <------>
 | ||
|  |     //                                       <---- rest ---->
 | ||
|  |     // --------------[------------------+----+--------------]--------------
 | ||
|  |     //                                  w    V
 | ||
|  |     //                                       = buf * 10^k
 | ||
|  |     //
 | ||
|  |     // ten_k represents a unit-in-the-last-place in the decimal representation
 | ||
|  |     // stored in buf.
 | ||
|  |     // Decrement buf by ten_k while this takes buf closer to w.
 | ||
|  | 
 | ||
|  |     // The tests are written in this order to avoid overflow in unsigned
 | ||
|  |     // integer arithmetic.
 | ||
|  | 
 | ||
|  |     while (rest < dist | ||
|  |             && delta - rest >= ten_k | ||
|  |             && (rest + ten_k < dist || dist - rest > rest + ten_k - dist)) | ||
|  |     { | ||
|  |         JSON_ASSERT(buf[len - 1] != '0'); | ||
|  |         buf[len - 1]--; | ||
|  |         rest += ten_k; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /*!
 | ||
|  | Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+. | ||
|  | M- and M+ must be normalized and share the same exponent -60 <= e <= -32. | ||
|  | */ | ||
|  | inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent, | ||
|  |                              diyfp M_minus, diyfp w, diyfp M_plus) | ||
|  | { | ||
|  |     static_assert(kAlpha >= -60, "internal error"); | ||
|  |     static_assert(kGamma <= -32, "internal error"); | ||
|  | 
 | ||
|  |     // Generates the digits (and the exponent) of a decimal floating-point
 | ||
|  |     // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
 | ||
|  |     // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
 | ||
|  |     //
 | ||
|  |     //               <--------------------------- delta ---->
 | ||
|  |     //                                  <---- dist --------->
 | ||
|  |     // --------------[------------------+-------------------]--------------
 | ||
|  |     //               M-                 w                   M+
 | ||
|  |     //
 | ||
|  |     // Grisu2 generates the digits of M+ from left to right and stops as soon as
 | ||
|  |     // V is in [M-,M+].
 | ||
|  | 
 | ||
|  |     JSON_ASSERT(M_plus.e >= kAlpha); | ||
|  |     JSON_ASSERT(M_plus.e <= kGamma); | ||
|  | 
 | ||
|  |     std::uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
 | ||
|  |     std::uint64_t dist  = diyfp::sub(M_plus, w      ).f; // (significand of (M+ - w ), implicit exponent is e)
 | ||
|  | 
 | ||
|  |     // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
 | ||
|  |     //
 | ||
|  |     //      M+ = f * 2^e
 | ||
|  |     //         = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
 | ||
|  |     //         = ((p1        ) * 2^-e + (p2        )) * 2^e
 | ||
|  |     //         = p1 + p2 * 2^e
 | ||
|  | 
 | ||
|  |     const diyfp one(std::uint64_t{1} << -M_plus.e, M_plus.e); | ||
|  | 
 | ||
|  |     auto p1 = static_cast<std::uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
 | ||
|  |     std::uint64_t p2 = M_plus.f & (one.f - 1);                    // p2 = f mod 2^-e
 | ||
|  | 
 | ||
|  |     // 1)
 | ||
|  |     //
 | ||
|  |     // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
 | ||
|  | 
 | ||
|  |     JSON_ASSERT(p1 > 0); | ||
|  | 
 | ||
|  |     std::uint32_t pow10{}; | ||
|  |     const int k = find_largest_pow10(p1, pow10); | ||
|  | 
 | ||
|  |     //      10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
 | ||
|  |     //
 | ||
|  |     //      p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
 | ||
|  |     //         = (d[k-1]         ) * 10^(k-1) + (p1 mod 10^(k-1))
 | ||
|  |     //
 | ||
|  |     //      M+ = p1                                             + p2 * 2^e
 | ||
|  |     //         = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1))          + p2 * 2^e
 | ||
|  |     //         = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
 | ||
|  |     //         = d[k-1] * 10^(k-1) + (                         rest) * 2^e
 | ||
|  |     //
 | ||
|  |     // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
 | ||
|  |     //
 | ||
|  |     //      p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
 | ||
|  |     //
 | ||
|  |     // but stop as soon as
 | ||
|  |     //
 | ||
|  |     //      rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
 | ||
|  | 
 | ||
|  |     int n = k; | ||
|  |     while (n > 0) | ||
|  |     { | ||
|  |         // Invariants:
 | ||
|  |         //      M+ = buffer * 10^n + (p1 + p2 * 2^e)    (buffer = 0 for n = k)
 | ||
|  |         //      pow10 = 10^(n-1) <= p1 < 10^n
 | ||
|  |         //
 | ||
|  |         const std::uint32_t d = p1 / pow10;  // d = p1 div 10^(n-1)
 | ||
|  |         const std::uint32_t r = p1 % pow10;  // r = p1 mod 10^(n-1)
 | ||
|  |         //
 | ||
|  |         //      M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
 | ||
|  |         //         = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
 | ||
|  |         //
 | ||
|  |         JSON_ASSERT(d <= 9); | ||
|  |         buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
 | ||
|  |         //
 | ||
|  |         //      M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
 | ||
|  |         //
 | ||
|  |         p1 = r; | ||
|  |         n--; | ||
|  |         //
 | ||
|  |         //      M+ = buffer * 10^n + (p1 + p2 * 2^e)
 | ||
|  |         //      pow10 = 10^n
 | ||
|  |         //
 | ||
|  | 
 | ||
|  |         // Now check if enough digits have been generated.
 | ||
|  |         // Compute
 | ||
|  |         //
 | ||
|  |         //      p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
 | ||
|  |         //
 | ||
|  |         // Note:
 | ||
|  |         // Since rest and delta share the same exponent e, it suffices to
 | ||
|  |         // compare the significands.
 | ||
|  |         const std::uint64_t rest = (std::uint64_t{p1} << -one.e) + p2; | ||
|  |         if (rest <= delta) | ||
|  |         { | ||
|  |             // V = buffer * 10^n, with M- <= V <= M+.
 | ||
|  | 
 | ||
|  |             decimal_exponent += n; | ||
|  | 
 | ||
|  |             // We may now just stop. But instead look if the buffer could be
 | ||
|  |             // decremented to bring V closer to w.
 | ||
|  |             //
 | ||
|  |             // pow10 = 10^n is now 1 ulp in the decimal representation V.
 | ||
|  |             // The rounding procedure works with diyfp's with an implicit
 | ||
|  |             // exponent of e.
 | ||
|  |             //
 | ||
|  |             //      10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
 | ||
|  |             //
 | ||
|  |             const std::uint64_t ten_n = std::uint64_t{pow10} << -one.e; | ||
|  |             grisu2_round(buffer, length, dist, delta, rest, ten_n); | ||
|  | 
 | ||
|  |             return; | ||
|  |         } | ||
|  | 
 | ||
|  |         pow10 /= 10; | ||
|  |         //
 | ||
|  |         //      pow10 = 10^(n-1) <= p1 < 10^n
 | ||
|  |         // Invariants restored.
 | ||
|  |     } | ||
|  | 
 | ||
|  |     // 2)
 | ||
|  |     //
 | ||
|  |     // The digits of the integral part have been generated:
 | ||
|  |     //
 | ||
|  |     //      M+ = d[k-1]...d[1]d[0] + p2 * 2^e
 | ||
|  |     //         = buffer            + p2 * 2^e
 | ||
|  |     //
 | ||
|  |     // Now generate the digits of the fractional part p2 * 2^e.
 | ||
|  |     //
 | ||
|  |     // Note:
 | ||
|  |     // No decimal point is generated: the exponent is adjusted instead.
 | ||
|  |     //
 | ||
|  |     // p2 actually represents the fraction
 | ||
|  |     //
 | ||
|  |     //      p2 * 2^e
 | ||
|  |     //          = p2 / 2^-e
 | ||
|  |     //          = d[-1] / 10^1 + d[-2] / 10^2 + ...
 | ||
|  |     //
 | ||
|  |     // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
 | ||
|  |     //
 | ||
|  |     //      p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
 | ||
|  |     //                      + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
 | ||
|  |     //
 | ||
|  |     // using
 | ||
|  |     //
 | ||
|  |     //      10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
 | ||
|  |     //                = (                   d) * 2^-e + (                   r)
 | ||
|  |     //
 | ||
|  |     // or
 | ||
|  |     //      10^m * p2 * 2^e = d + r * 2^e
 | ||
|  |     //
 | ||
|  |     // i.e.
 | ||
|  |     //
 | ||
|  |     //      M+ = buffer + p2 * 2^e
 | ||
|  |     //         = buffer + 10^-m * (d + r * 2^e)
 | ||
|  |     //         = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
 | ||
|  |     //
 | ||
|  |     // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
 | ||
|  | 
 | ||
|  |     JSON_ASSERT(p2 > delta); | ||
|  | 
 | ||
|  |     int m = 0; | ||
|  |     for (;;) | ||
|  |     { | ||
|  |         // Invariant:
 | ||
|  |         //      M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
 | ||
|  |         //         = buffer * 10^-m + 10^-m * (p2                                 ) * 2^e
 | ||
|  |         //         = buffer * 10^-m + 10^-m * (1/10 * (10 * p2)                   ) * 2^e
 | ||
|  |         //         = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
 | ||
|  |         //
 | ||
|  |         JSON_ASSERT(p2 <= (std::numeric_limits<std::uint64_t>::max)() / 10); | ||
|  |         p2 *= 10; | ||
|  |         const std::uint64_t d = p2 >> -one.e;     // d = (10 * p2) div 2^-e
 | ||
|  |         const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
 | ||
|  |         //
 | ||
|  |         //      M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
 | ||
|  |         //         = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
 | ||
|  |         //         = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
 | ||
|  |         //
 | ||
|  |         JSON_ASSERT(d <= 9); | ||
|  |         buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
 | ||
|  |         //
 | ||
|  |         //      M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
 | ||
|  |         //
 | ||
|  |         p2 = r; | ||
|  |         m++; | ||
|  |         //
 | ||
|  |         //      M+ = buffer * 10^-m + 10^-m * p2 * 2^e
 | ||
|  |         // Invariant restored.
 | ||
|  | 
 | ||
|  |         // Check if enough digits have been generated.
 | ||
|  |         //
 | ||
|  |         //      10^-m * p2 * 2^e <= delta * 2^e
 | ||
|  |         //              p2 * 2^e <= 10^m * delta * 2^e
 | ||
|  |         //                    p2 <= 10^m * delta
 | ||
|  |         delta *= 10; | ||
|  |         dist  *= 10; | ||
|  |         if (p2 <= delta) | ||
|  |         { | ||
|  |             break; | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     // V = buffer * 10^-m, with M- <= V <= M+.
 | ||
|  | 
 | ||
|  |     decimal_exponent -= m; | ||
|  | 
 | ||
|  |     // 1 ulp in the decimal representation is now 10^-m.
 | ||
|  |     // Since delta and dist are now scaled by 10^m, we need to do the
 | ||
|  |     // same with ulp in order to keep the units in sync.
 | ||
|  |     //
 | ||
|  |     //      10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
 | ||
|  |     //
 | ||
|  |     const std::uint64_t ten_m = one.f; | ||
|  |     grisu2_round(buffer, length, dist, delta, p2, ten_m); | ||
|  | 
 | ||
|  |     // By construction this algorithm generates the shortest possible decimal
 | ||
|  |     // number (Loitsch, Theorem 6.2) which rounds back to w.
 | ||
|  |     // For an input number of precision p, at least
 | ||
|  |     //
 | ||
|  |     //      N = 1 + ceil(p * log_10(2))
 | ||
|  |     //
 | ||
|  |     // decimal digits are sufficient to identify all binary floating-point
 | ||
|  |     // numbers (Matula, "In-and-Out conversions").
 | ||
|  |     // This implies that the algorithm does not produce more than N decimal
 | ||
|  |     // digits.
 | ||
|  |     //
 | ||
|  |     //      N = 17 for p = 53 (IEEE double precision)
 | ||
|  |     //      N = 9  for p = 24 (IEEE single precision)
 | ||
|  | } | ||
|  | 
 | ||
|  | /*!
 | ||
|  | v = buf * 10^decimal_exponent | ||
|  | len is the length of the buffer (number of decimal digits) | ||
|  | The buffer must be large enough, i.e. >= max_digits10. | ||
|  | */ | ||
|  | JSON_HEDLEY_NON_NULL(1) | ||
|  | inline void grisu2(char* buf, int& len, int& decimal_exponent, | ||
|  |                    diyfp m_minus, diyfp v, diyfp m_plus) | ||
|  | { | ||
|  |     JSON_ASSERT(m_plus.e == m_minus.e); | ||
|  |     JSON_ASSERT(m_plus.e == v.e); | ||
|  | 
 | ||
|  |     //  --------(-----------------------+-----------------------)--------    (A)
 | ||
|  |     //          m-                      v                       m+
 | ||
|  |     //
 | ||
|  |     //  --------------------(-----------+-----------------------)--------    (B)
 | ||
|  |     //                      m-          v                       m+
 | ||
|  |     //
 | ||
|  |     // First scale v (and m- and m+) such that the exponent is in the range
 | ||
|  |     // [alpha, gamma].
 | ||
|  | 
 | ||
|  |     const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e); | ||
|  | 
 | ||
|  |     const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
 | ||
|  | 
 | ||
|  |     // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
 | ||
|  |     const diyfp w       = diyfp::mul(v,       c_minus_k); | ||
|  |     const diyfp w_minus = diyfp::mul(m_minus, c_minus_k); | ||
|  |     const diyfp w_plus  = diyfp::mul(m_plus,  c_minus_k); | ||
|  | 
 | ||
|  |     //  ----(---+---)---------------(---+---)---------------(---+---)----
 | ||
|  |     //          w-                      w                       w+
 | ||
|  |     //          = c*m-                  = c*v                   = c*m+
 | ||
|  |     //
 | ||
|  |     // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
 | ||
|  |     // w+ are now off by a small amount.
 | ||
|  |     // In fact:
 | ||
|  |     //
 | ||
|  |     //      w - v * 10^k < 1 ulp
 | ||
|  |     //
 | ||
|  |     // To account for this inaccuracy, add resp. subtract 1 ulp.
 | ||
|  |     //
 | ||
|  |     //  --------+---[---------------(---+---)---------------]---+--------
 | ||
|  |     //          w-  M-                  w                   M+  w+
 | ||
|  |     //
 | ||
|  |     // Now any number in [M-, M+] (bounds included) will round to w when input,
 | ||
|  |     // regardless of how the input rounding algorithm breaks ties.
 | ||
|  |     //
 | ||
|  |     // And digit_gen generates the shortest possible such number in [M-, M+].
 | ||
|  |     // Note that this does not mean that Grisu2 always generates the shortest
 | ||
|  |     // possible number in the interval (m-, m+).
 | ||
|  |     const diyfp M_minus(w_minus.f + 1, w_minus.e); | ||
|  |     const diyfp M_plus (w_plus.f  - 1, w_plus.e ); | ||
|  | 
 | ||
|  |     decimal_exponent = -cached.k; // = -(-k) = k
 | ||
|  | 
 | ||
|  |     grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus); | ||
|  | } | ||
|  | 
 | ||
|  | /*!
 | ||
|  | v = buf * 10^decimal_exponent | ||
|  | len is the length of the buffer (number of decimal digits) | ||
|  | The buffer must be large enough, i.e. >= max_digits10. | ||
|  | */ | ||
|  | template<typename FloatType> | ||
|  | JSON_HEDLEY_NON_NULL(1) | ||
|  | void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value) | ||
|  | { | ||
|  |     static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3, | ||
|  |                   "internal error: not enough precision"); | ||
|  | 
 | ||
|  |     JSON_ASSERT(std::isfinite(value)); | ||
|  |     JSON_ASSERT(value > 0); | ||
|  | 
 | ||
|  |     // If the neighbors (and boundaries) of 'value' are always computed for double-precision
 | ||
|  |     // numbers, all float's can be recovered using strtod (and strtof). However, the resulting
 | ||
|  |     // decimal representations are not exactly "short".
 | ||
|  |     //
 | ||
|  |     // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
 | ||
|  |     // says "value is converted to a string as if by std::sprintf in the default ("C") locale"
 | ||
|  |     // and since sprintf promotes floats to doubles, I think this is exactly what 'std::to_chars'
 | ||
|  |     // does.
 | ||
|  |     // On the other hand, the documentation for 'std::to_chars' requires that "parsing the
 | ||
|  |     // representation using the corresponding std::from_chars function recovers value exactly". That
 | ||
|  |     // indicates that single precision floating-point numbers should be recovered using
 | ||
|  |     // 'std::strtof'.
 | ||
|  |     //
 | ||
|  |     // NB: If the neighbors are computed for single-precision numbers, there is a single float
 | ||
|  |     //     (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
 | ||
|  |     //     value is off by 1 ulp.
 | ||
|  | #if 0 // NOLINT(readability-avoid-unconditional-preprocessor-if)
 | ||
|  |     const boundaries w = compute_boundaries(static_cast<double>(value)); | ||
|  | #else
 | ||
|  |     const boundaries w = compute_boundaries(value); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus); | ||
|  | } | ||
|  | 
 | ||
|  | /*!
 | ||
|  | @brief appends a decimal representation of e to buf | ||
|  | @return a pointer to the element following the exponent. | ||
|  | @pre -1000 < e < 1000 | ||
|  | */ | ||
|  | JSON_HEDLEY_NON_NULL(1) | ||
|  | JSON_HEDLEY_RETURNS_NON_NULL | ||
|  | inline char* append_exponent(char* buf, int e) | ||
|  | { | ||
|  |     JSON_ASSERT(e > -1000); | ||
|  |     JSON_ASSERT(e <  1000); | ||
|  | 
 | ||
|  |     if (e < 0) | ||
|  |     { | ||
|  |         e = -e; | ||
|  |         *buf++ = '-'; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         *buf++ = '+'; | ||
|  |     } | ||
|  | 
 | ||
|  |     auto k = static_cast<std::uint32_t>(e); | ||
|  |     if (k < 10) | ||
|  |     { | ||
|  |         // Always print at least two digits in the exponent.
 | ||
|  |         // This is for compatibility with printf("%g").
 | ||
|  |         *buf++ = '0'; | ||
|  |         *buf++ = static_cast<char>('0' + k); | ||
|  |     } | ||
|  |     else if (k < 100) | ||
|  |     { | ||
|  |         *buf++ = static_cast<char>('0' + k / 10); | ||
|  |         k %= 10; | ||
|  |         *buf++ = static_cast<char>('0' + k); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         *buf++ = static_cast<char>('0' + k / 100); | ||
|  |         k %= 100; | ||
|  |         *buf++ = static_cast<char>('0' + k / 10); | ||
|  |         k %= 10; | ||
|  |         *buf++ = static_cast<char>('0' + k); | ||
|  |     } | ||
|  | 
 | ||
|  |     return buf; | ||
|  | } | ||
|  | 
 | ||
|  | /*!
 | ||
|  | @brief prettify v = buf * 10^decimal_exponent | ||
|  | 
 | ||
|  | If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point | ||
|  | notation. Otherwise it will be printed in exponential notation. | ||
|  | 
 | ||
|  | @pre min_exp < 0 | ||
|  | @pre max_exp > 0 | ||
|  | */ | ||
|  | JSON_HEDLEY_NON_NULL(1) | ||
|  | JSON_HEDLEY_RETURNS_NON_NULL | ||
|  | inline char* format_buffer(char* buf, int len, int decimal_exponent, | ||
|  |                            int min_exp, int max_exp) | ||
|  | { | ||
|  |     JSON_ASSERT(min_exp < 0); | ||
|  |     JSON_ASSERT(max_exp > 0); | ||
|  | 
 | ||
|  |     const int k = len; | ||
|  |     const int n = len + decimal_exponent; | ||
|  | 
 | ||
|  |     // v = buf * 10^(n-k)
 | ||
|  |     // k is the length of the buffer (number of decimal digits)
 | ||
|  |     // n is the position of the decimal point relative to the start of the buffer.
 | ||
|  | 
 | ||
|  |     if (k <= n && n <= max_exp) | ||
|  |     { | ||
|  |         // digits[000]
 | ||
|  |         // len <= max_exp + 2
 | ||
|  | 
 | ||
|  |         std::memset(buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k)); | ||
|  |         // Make it look like a floating-point number (#362, #378)
 | ||
|  |         buf[n + 0] = '.'; | ||
|  |         buf[n + 1] = '0'; | ||
|  |         return buf + (static_cast<size_t>(n) + 2); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (0 < n && n <= max_exp) | ||
|  |     { | ||
|  |         // dig.its
 | ||
|  |         // len <= max_digits10 + 1
 | ||
|  | 
 | ||
|  |         JSON_ASSERT(k > n); | ||
|  | 
 | ||
|  |         std::memmove(buf + (static_cast<size_t>(n) + 1), buf + n, static_cast<size_t>(k) - static_cast<size_t>(n)); | ||
|  |         buf[n] = '.'; | ||
|  |         return buf + (static_cast<size_t>(k) + 1U); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (min_exp < n && n <= 0) | ||
|  |     { | ||
|  |         // 0.[000]digits
 | ||
|  |         // len <= 2 + (-min_exp - 1) + max_digits10
 | ||
|  | 
 | ||
|  |         std::memmove(buf + (2 + static_cast<size_t>(-n)), buf, static_cast<size_t>(k)); | ||
|  |         buf[0] = '0'; | ||
|  |         buf[1] = '.'; | ||
|  |         std::memset(buf + 2, '0', static_cast<size_t>(-n)); | ||
|  |         return buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k)); | ||
|  |     } | ||
|  | 
 | ||
|  |     if (k == 1) | ||
|  |     { | ||
|  |         // dE+123
 | ||
|  |         // len <= 1 + 5
 | ||
|  | 
 | ||
|  |         buf += 1; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |         // d.igitsE+123
 | ||
|  |         // len <= max_digits10 + 1 + 5
 | ||
|  | 
 | ||
|  |         std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1); | ||
|  |         buf[1] = '.'; | ||
|  |         buf += 1 + static_cast<size_t>(k); | ||
|  |     } | ||
|  | 
 | ||
|  |     *buf++ = 'e'; | ||
|  |     return append_exponent(buf, n - 1); | ||
|  | } | ||
|  | 
 | ||
|  | }  // namespace dtoa_impl
 | ||
|  | 
 | ||
|  | /*!
 | ||
|  | @brief generates a decimal representation of the floating-point number value in [first, last). | ||
|  | 
 | ||
|  | The format of the resulting decimal representation is similar to printf's %g | ||
|  | format. Returns an iterator pointing past-the-end of the decimal representation. | ||
|  | 
 | ||
|  | @note The input number must be finite, i.e. NaN's and Inf's are not supported. | ||
|  | @note The buffer must be large enough. | ||
|  | @note The result is NOT null-terminated. | ||
|  | */ | ||
|  | template<typename FloatType> | ||
|  | JSON_HEDLEY_NON_NULL(1, 2) | ||
|  | JSON_HEDLEY_RETURNS_NON_NULL | ||
|  | char* to_chars(char* first, const char* last, FloatType value) | ||
|  | { | ||
|  |     static_cast<void>(last); // maybe unused - fix warning
 | ||
|  |     JSON_ASSERT(std::isfinite(value)); | ||
|  | 
 | ||
|  |     // Use signbit(value) instead of (value < 0) since signbit works for -0.
 | ||
|  |     if (std::signbit(value)) | ||
|  |     { | ||
|  |         value = -value; | ||
|  |         *first++ = '-'; | ||
|  |     } | ||
|  | 
 | ||
|  | #ifdef __GNUC__
 | ||
|  | #pragma GCC diagnostic push
 | ||
|  | #pragma GCC diagnostic ignored "-Wfloat-equal"
 | ||
|  | #endif
 | ||
|  |     if (value == 0) // +-0
 | ||
|  |     { | ||
|  |         *first++ = '0'; | ||
|  |         // Make it look like a floating-point number (#362, #378)
 | ||
|  |         *first++ = '.'; | ||
|  |         *first++ = '0'; | ||
|  |         return first; | ||
|  |     } | ||
|  | #ifdef __GNUC__
 | ||
|  | #pragma GCC diagnostic pop
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10); | ||
|  | 
 | ||
|  |     // Compute v = buffer * 10^decimal_exponent.
 | ||
|  |     // The decimal digits are stored in the buffer, which needs to be interpreted
 | ||
|  |     // as an unsigned decimal integer.
 | ||
|  |     // len is the length of the buffer, i.e. the number of decimal digits.
 | ||
|  |     int len = 0; | ||
|  |     int decimal_exponent = 0; | ||
|  |     dtoa_impl::grisu2(first, len, decimal_exponent, value); | ||
|  | 
 | ||
|  |     JSON_ASSERT(len <= std::numeric_limits<FloatType>::max_digits10); | ||
|  | 
 | ||
|  |     // Format the buffer like printf("%.*g", prec, value)
 | ||
|  |     constexpr int kMinExp = -4; | ||
|  |     // Use digits10 here to increase compatibility with version 2.
 | ||
|  |     constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10; | ||
|  | 
 | ||
|  |     JSON_ASSERT(last - first >= kMaxExp + 2); | ||
|  |     JSON_ASSERT(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10); | ||
|  |     JSON_ASSERT(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6); | ||
|  | 
 | ||
|  |     return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp); | ||
|  | } | ||
|  | 
 | ||
|  | }  // namespace detail
 | ||
|  | NLOHMANN_JSON_NAMESPACE_END |