609 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			609 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
| //
 | |
| // detail/impl/kqueue_reactor.ipp
 | |
| // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | |
| //
 | |
| // Copyright (c) 2003-2023 Christopher M. Kohlhoff (chris at kohlhoff dot com)
 | |
| // Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
 | |
| //
 | |
| // Distributed under the Boost Software License, Version 1.0. (See accompanying
 | |
| // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| //
 | |
| 
 | |
| #ifndef ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
 | |
| #define ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
 | |
| 
 | |
| #if defined(_MSC_VER) && (_MSC_VER >= 1200)
 | |
| # pragma once
 | |
| #endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
 | |
| 
 | |
| #include "asio/detail/config.hpp"
 | |
| 
 | |
| #if defined(ASIO_HAS_KQUEUE)
 | |
| 
 | |
| #include "asio/detail/kqueue_reactor.hpp"
 | |
| #include "asio/detail/scheduler.hpp"
 | |
| #include "asio/detail/throw_error.hpp"
 | |
| #include "asio/error.hpp"
 | |
| 
 | |
| #if defined(__NetBSD__)
 | |
| # include <sys/param.h>
 | |
| #endif
 | |
| 
 | |
| #include "asio/detail/push_options.hpp"
 | |
| 
 | |
| #if defined(__NetBSD__) && __NetBSD_Version__ < 999001500
 | |
| # define ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \
 | |
|     EV_SET(ev, ident, filt, flags, fflags, data, \
 | |
|       reinterpret_cast<intptr_t>(static_cast<void*>(udata)))
 | |
| #else
 | |
| # define ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \
 | |
|     EV_SET(ev, ident, filt, flags, fflags, data, udata)
 | |
| #endif
 | |
| 
 | |
| namespace asio {
 | |
| namespace detail {
 | |
| 
 | |
| kqueue_reactor::kqueue_reactor(asio::execution_context& ctx)
 | |
|   : execution_context_service_base<kqueue_reactor>(ctx),
 | |
|     scheduler_(use_service<scheduler>(ctx)),
 | |
|     mutex_(ASIO_CONCURRENCY_HINT_IS_LOCKING(
 | |
|           REACTOR_REGISTRATION, scheduler_.concurrency_hint())),
 | |
|     kqueue_fd_(do_kqueue_create()),
 | |
|     interrupter_(),
 | |
|     shutdown_(false),
 | |
|     registered_descriptors_mutex_(mutex_.enabled())
 | |
| {
 | |
|   struct kevent events[1];
 | |
|   ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(),
 | |
|       EVFILT_READ, EV_ADD, 0, 0, &interrupter_);
 | |
|   if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
 | |
|   {
 | |
|     asio::error_code error(errno,
 | |
|         asio::error::get_system_category());
 | |
|     asio::detail::throw_error(error);
 | |
|   }
 | |
| }
 | |
| 
 | |
| kqueue_reactor::~kqueue_reactor()
 | |
| {
 | |
|   close(kqueue_fd_);
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::shutdown()
 | |
| {
 | |
|   mutex::scoped_lock lock(mutex_);
 | |
|   shutdown_ = true;
 | |
|   lock.unlock();
 | |
| 
 | |
|   op_queue<operation> ops;
 | |
| 
 | |
|   while (descriptor_state* state = registered_descriptors_.first())
 | |
|   {
 | |
|     for (int i = 0; i < max_ops; ++i)
 | |
|       ops.push(state->op_queue_[i]);
 | |
|     state->shutdown_ = true;
 | |
|     registered_descriptors_.free(state);
 | |
|   }
 | |
| 
 | |
|   timer_queues_.get_all_timers(ops);
 | |
| 
 | |
|   scheduler_.abandon_operations(ops);
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::notify_fork(
 | |
|     asio::execution_context::fork_event fork_ev)
 | |
| {
 | |
|   if (fork_ev == asio::execution_context::fork_child)
 | |
|   {
 | |
|     // The kqueue descriptor is automatically closed in the child.
 | |
|     kqueue_fd_ = -1;
 | |
|     kqueue_fd_ = do_kqueue_create();
 | |
| 
 | |
|     interrupter_.recreate();
 | |
| 
 | |
|     struct kevent events[2];
 | |
|     ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(),
 | |
|         EVFILT_READ, EV_ADD, 0, 0, &interrupter_);
 | |
|     if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
 | |
|     {
 | |
|       asio::error_code ec(errno,
 | |
|           asio::error::get_system_category());
 | |
|       asio::detail::throw_error(ec, "kqueue interrupter registration");
 | |
|     }
 | |
| 
 | |
|     // Re-register all descriptors with kqueue.
 | |
|     mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
 | |
|     for (descriptor_state* state = registered_descriptors_.first();
 | |
|         state != 0; state = state->next_)
 | |
|     {
 | |
|       if (state->num_kevents_ > 0)
 | |
|       {
 | |
|         ASIO_KQUEUE_EV_SET(&events[0], state->descriptor_,
 | |
|             EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, state);
 | |
|         ASIO_KQUEUE_EV_SET(&events[1], state->descriptor_,
 | |
|             EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, state);
 | |
|         if (::kevent(kqueue_fd_, events, state->num_kevents_, 0, 0, 0) == -1)
 | |
|         {
 | |
|           asio::error_code ec(errno,
 | |
|               asio::error::get_system_category());
 | |
|           asio::detail::throw_error(ec, "kqueue re-registration");
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::init_task()
 | |
| {
 | |
|   scheduler_.init_task();
 | |
| }
 | |
| 
 | |
| int kqueue_reactor::register_descriptor(socket_type descriptor,
 | |
|     kqueue_reactor::per_descriptor_data& descriptor_data)
 | |
| {
 | |
|   descriptor_data = allocate_descriptor_state();
 | |
| 
 | |
|   ASIO_HANDLER_REACTOR_REGISTRATION((
 | |
|         context(), static_cast<uintmax_t>(descriptor),
 | |
|         reinterpret_cast<uintmax_t>(descriptor_data)));
 | |
| 
 | |
|   mutex::scoped_lock lock(descriptor_data->mutex_);
 | |
| 
 | |
|   descriptor_data->descriptor_ = descriptor;
 | |
|   descriptor_data->num_kevents_ = 0;
 | |
|   descriptor_data->shutdown_ = false;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| int kqueue_reactor::register_internal_descriptor(
 | |
|     int op_type, socket_type descriptor,
 | |
|     kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op)
 | |
| {
 | |
|   descriptor_data = allocate_descriptor_state();
 | |
| 
 | |
|   ASIO_HANDLER_REACTOR_REGISTRATION((
 | |
|         context(), static_cast<uintmax_t>(descriptor),
 | |
|         reinterpret_cast<uintmax_t>(descriptor_data)));
 | |
| 
 | |
|   mutex::scoped_lock lock(descriptor_data->mutex_);
 | |
| 
 | |
|   descriptor_data->descriptor_ = descriptor;
 | |
|   descriptor_data->num_kevents_ = 1;
 | |
|   descriptor_data->shutdown_ = false;
 | |
|   descriptor_data->op_queue_[op_type].push(op);
 | |
| 
 | |
|   struct kevent events[1];
 | |
|   ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
 | |
|       EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
 | |
|   if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
 | |
|     return errno;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::move_descriptor(socket_type,
 | |
|     kqueue_reactor::per_descriptor_data& target_descriptor_data,
 | |
|     kqueue_reactor::per_descriptor_data& source_descriptor_data)
 | |
| {
 | |
|   target_descriptor_data = source_descriptor_data;
 | |
|   source_descriptor_data = 0;
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::call_post_immediate_completion(
 | |
|     operation* op, bool is_continuation, const void* self)
 | |
| {
 | |
|   static_cast<const kqueue_reactor*>(self)->post_immediate_completion(
 | |
|       op, is_continuation);
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::start_op(int op_type, socket_type descriptor,
 | |
|     kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op,
 | |
|     bool is_continuation, bool allow_speculative,
 | |
|     void (*on_immediate)(operation*, bool, const void*),
 | |
|     const void* immediate_arg)
 | |
| {
 | |
|   if (!descriptor_data)
 | |
|   {
 | |
|     op->ec_ = asio::error::bad_descriptor;
 | |
|     on_immediate(op, is_continuation, immediate_arg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
 | |
| 
 | |
|   if (descriptor_data->shutdown_)
 | |
|   {
 | |
|     on_immediate(op, is_continuation, immediate_arg);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (descriptor_data->op_queue_[op_type].empty())
 | |
|   {
 | |
|     static const int num_kevents[max_ops] = { 1, 2, 1 };
 | |
| 
 | |
|     if (allow_speculative
 | |
|         && (op_type != read_op
 | |
|           || descriptor_data->op_queue_[except_op].empty()))
 | |
|     {
 | |
|       if (op->perform())
 | |
|       {
 | |
|         descriptor_lock.unlock();
 | |
|         on_immediate(op, is_continuation, immediate_arg);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       if (descriptor_data->num_kevents_ < num_kevents[op_type])
 | |
|       {
 | |
|         struct kevent events[2];
 | |
|         ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
 | |
|             EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
 | |
|         ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE,
 | |
|             EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
 | |
|         if (::kevent(kqueue_fd_, events, num_kevents[op_type], 0, 0, 0) != -1)
 | |
|         {
 | |
|           descriptor_data->num_kevents_ = num_kevents[op_type];
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           op->ec_ = asio::error_code(errno,
 | |
|               asio::error::get_system_category());
 | |
|           on_immediate(op, is_continuation, immediate_arg);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if (descriptor_data->num_kevents_ < num_kevents[op_type])
 | |
|         descriptor_data->num_kevents_ = num_kevents[op_type];
 | |
| 
 | |
|       struct kevent events[2];
 | |
|       ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
 | |
|           EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
 | |
|       ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE,
 | |
|           EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
 | |
|       ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   descriptor_data->op_queue_[op_type].push(op);
 | |
|   scheduler_.work_started();
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::cancel_ops(socket_type,
 | |
|     kqueue_reactor::per_descriptor_data& descriptor_data)
 | |
| {
 | |
|   if (!descriptor_data)
 | |
|     return;
 | |
| 
 | |
|   mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
 | |
| 
 | |
|   op_queue<operation> ops;
 | |
|   for (int i = 0; i < max_ops; ++i)
 | |
|   {
 | |
|     while (reactor_op* op = descriptor_data->op_queue_[i].front())
 | |
|     {
 | |
|       op->ec_ = asio::error::operation_aborted;
 | |
|       descriptor_data->op_queue_[i].pop();
 | |
|       ops.push(op);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   descriptor_lock.unlock();
 | |
| 
 | |
|   scheduler_.post_deferred_completions(ops);
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::cancel_ops_by_key(socket_type,
 | |
|     kqueue_reactor::per_descriptor_data& descriptor_data,
 | |
|     int op_type, void* cancellation_key)
 | |
| {
 | |
|   if (!descriptor_data)
 | |
|     return;
 | |
| 
 | |
|   mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
 | |
| 
 | |
|   op_queue<operation> ops;
 | |
|   op_queue<reactor_op> other_ops;
 | |
|   while (reactor_op* op = descriptor_data->op_queue_[op_type].front())
 | |
|   {
 | |
|     descriptor_data->op_queue_[op_type].pop();
 | |
|     if (op->cancellation_key_ == cancellation_key)
 | |
|     {
 | |
|       op->ec_ = asio::error::operation_aborted;
 | |
|       ops.push(op);
 | |
|     }
 | |
|     else
 | |
|       other_ops.push(op);
 | |
|   }
 | |
|   descriptor_data->op_queue_[op_type].push(other_ops);
 | |
| 
 | |
|   descriptor_lock.unlock();
 | |
| 
 | |
|   scheduler_.post_deferred_completions(ops);
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::deregister_descriptor(socket_type descriptor,
 | |
|     kqueue_reactor::per_descriptor_data& descriptor_data, bool closing)
 | |
| {
 | |
|   if (!descriptor_data)
 | |
|     return;
 | |
| 
 | |
|   mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
 | |
| 
 | |
|   if (!descriptor_data->shutdown_)
 | |
|   {
 | |
|     if (closing)
 | |
|     {
 | |
|       // The descriptor will be automatically removed from the kqueue when it
 | |
|       // is closed.
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       struct kevent events[2];
 | |
|       ASIO_KQUEUE_EV_SET(&events[0], descriptor,
 | |
|           EVFILT_READ, EV_DELETE, 0, 0, 0);
 | |
|       ASIO_KQUEUE_EV_SET(&events[1], descriptor,
 | |
|           EVFILT_WRITE, EV_DELETE, 0, 0, 0);
 | |
|       ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
 | |
|     }
 | |
| 
 | |
|     op_queue<operation> ops;
 | |
|     for (int i = 0; i < max_ops; ++i)
 | |
|     {
 | |
|       while (reactor_op* op = descriptor_data->op_queue_[i].front())
 | |
|       {
 | |
|         op->ec_ = asio::error::operation_aborted;
 | |
|         descriptor_data->op_queue_[i].pop();
 | |
|         ops.push(op);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     descriptor_data->descriptor_ = -1;
 | |
|     descriptor_data->shutdown_ = true;
 | |
| 
 | |
|     descriptor_lock.unlock();
 | |
| 
 | |
|     ASIO_HANDLER_REACTOR_DEREGISTRATION((
 | |
|           context(), static_cast<uintmax_t>(descriptor),
 | |
|           reinterpret_cast<uintmax_t>(descriptor_data)));
 | |
| 
 | |
|     scheduler_.post_deferred_completions(ops);
 | |
| 
 | |
|     // Leave descriptor_data set so that it will be freed by the subsequent
 | |
|     // call to cleanup_descriptor_data.
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // We are shutting down, so prevent cleanup_descriptor_data from freeing
 | |
|     // the descriptor_data object and let the destructor free it instead.
 | |
|     descriptor_data = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::deregister_internal_descriptor(socket_type descriptor,
 | |
|     kqueue_reactor::per_descriptor_data& descriptor_data)
 | |
| {
 | |
|   if (!descriptor_data)
 | |
|     return;
 | |
| 
 | |
|   mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
 | |
| 
 | |
|   if (!descriptor_data->shutdown_)
 | |
|   {
 | |
|     struct kevent events[2];
 | |
|     ASIO_KQUEUE_EV_SET(&events[0], descriptor,
 | |
|         EVFILT_READ, EV_DELETE, 0, 0, 0);
 | |
|     ASIO_KQUEUE_EV_SET(&events[1], descriptor,
 | |
|         EVFILT_WRITE, EV_DELETE, 0, 0, 0);
 | |
|     ::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
 | |
| 
 | |
|     op_queue<operation> ops;
 | |
|     for (int i = 0; i < max_ops; ++i)
 | |
|       ops.push(descriptor_data->op_queue_[i]);
 | |
| 
 | |
|     descriptor_data->descriptor_ = -1;
 | |
|     descriptor_data->shutdown_ = true;
 | |
| 
 | |
|     descriptor_lock.unlock();
 | |
| 
 | |
|     ASIO_HANDLER_REACTOR_DEREGISTRATION((
 | |
|           context(), static_cast<uintmax_t>(descriptor),
 | |
|           reinterpret_cast<uintmax_t>(descriptor_data)));
 | |
| 
 | |
|     // Leave descriptor_data set so that it will be freed by the subsequent
 | |
|     // call to cleanup_descriptor_data.
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     // We are shutting down, so prevent cleanup_descriptor_data from freeing
 | |
|     // the descriptor_data object and let the destructor free it instead.
 | |
|     descriptor_data = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::cleanup_descriptor_data(
 | |
|     per_descriptor_data& descriptor_data)
 | |
| {
 | |
|   if (descriptor_data)
 | |
|   {
 | |
|     free_descriptor_state(descriptor_data);
 | |
|     descriptor_data = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::run(long usec, op_queue<operation>& ops)
 | |
| {
 | |
|   mutex::scoped_lock lock(mutex_);
 | |
| 
 | |
|   // Determine how long to block while waiting for events.
 | |
|   timespec timeout_buf = { 0, 0 };
 | |
|   timespec* timeout = usec ? get_timeout(usec, timeout_buf) : &timeout_buf;
 | |
| 
 | |
|   lock.unlock();
 | |
| 
 | |
|   // Block on the kqueue descriptor.
 | |
|   struct kevent events[128];
 | |
|   int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);
 | |
| 
 | |
| #if defined(ASIO_ENABLE_HANDLER_TRACKING)
 | |
|   // Trace the waiting events.
 | |
|   for (int i = 0; i < num_events; ++i)
 | |
|   {
 | |
|     void* ptr = reinterpret_cast<void*>(events[i].udata);
 | |
|     if (ptr != &interrupter_)
 | |
|     {
 | |
|       unsigned event_mask = 0;
 | |
|       switch (events[i].filter)
 | |
|       {
 | |
|       case EVFILT_READ:
 | |
|         event_mask |= ASIO_HANDLER_REACTOR_READ_EVENT;
 | |
|         break;
 | |
|       case EVFILT_WRITE:
 | |
|         event_mask |= ASIO_HANDLER_REACTOR_WRITE_EVENT;
 | |
|         break;
 | |
|       }
 | |
|       if ((events[i].flags & (EV_ERROR | EV_OOBAND)) != 0)
 | |
|         event_mask |= ASIO_HANDLER_REACTOR_ERROR_EVENT;
 | |
|       ASIO_HANDLER_REACTOR_EVENTS((context(),
 | |
|             reinterpret_cast<uintmax_t>(ptr), event_mask));
 | |
|     }
 | |
|   }
 | |
| #endif // defined(ASIO_ENABLE_HANDLER_TRACKING)
 | |
| 
 | |
|   // Dispatch the waiting events.
 | |
|   for (int i = 0; i < num_events; ++i)
 | |
|   {
 | |
|     void* ptr = reinterpret_cast<void*>(events[i].udata);
 | |
|     if (ptr == &interrupter_)
 | |
|     {
 | |
|       interrupter_.reset();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
 | |
|       mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
 | |
| 
 | |
|       if (events[i].filter == EVFILT_WRITE
 | |
|           && descriptor_data->num_kevents_ == 2
 | |
|           && descriptor_data->op_queue_[write_op].empty())
 | |
|       {
 | |
|         // Some descriptor types, like serial ports, don't seem to support
 | |
|         // EV_CLEAR with EVFILT_WRITE. Since we have no pending write
 | |
|         // operations we'll remove the EVFILT_WRITE registration here so that
 | |
|         // we don't end up in a tight spin.
 | |
|         struct kevent delete_events[1];
 | |
|         ASIO_KQUEUE_EV_SET(&delete_events[0],
 | |
|             descriptor_data->descriptor_, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
 | |
|         ::kevent(kqueue_fd_, delete_events, 1, 0, 0, 0);
 | |
|         descriptor_data->num_kevents_ = 1;
 | |
|       }
 | |
| 
 | |
|       // Exception operations must be processed first to ensure that any
 | |
|       // out-of-band data is read before normal data.
 | |
| #if defined(__NetBSD__)
 | |
|       static const unsigned int filter[max_ops] =
 | |
| #else
 | |
|       static const int filter[max_ops] =
 | |
| #endif
 | |
|         { EVFILT_READ, EVFILT_WRITE, EVFILT_READ };
 | |
|       for (int j = max_ops - 1; j >= 0; --j)
 | |
|       {
 | |
|         if (events[i].filter == filter[j])
 | |
|         {
 | |
|           if (j != except_op || events[i].flags & EV_OOBAND)
 | |
|           {
 | |
|             while (reactor_op* op = descriptor_data->op_queue_[j].front())
 | |
|             {
 | |
|               if (events[i].flags & EV_ERROR)
 | |
|               {
 | |
|                 op->ec_ = asio::error_code(
 | |
|                     static_cast<int>(events[i].data),
 | |
|                     asio::error::get_system_category());
 | |
|                 descriptor_data->op_queue_[j].pop();
 | |
|                 ops.push(op);
 | |
|               }
 | |
|               if (op->perform())
 | |
|               {
 | |
|                 descriptor_data->op_queue_[j].pop();
 | |
|                 ops.push(op);
 | |
|               }
 | |
|               else
 | |
|                 break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   lock.lock();
 | |
|   timer_queues_.get_ready_timers(ops);
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::interrupt()
 | |
| {
 | |
|   interrupter_.interrupt();
 | |
| }
 | |
| 
 | |
| int kqueue_reactor::do_kqueue_create()
 | |
| {
 | |
|   int fd = ::kqueue();
 | |
|   if (fd == -1)
 | |
|   {
 | |
|     asio::error_code ec(errno,
 | |
|         asio::error::get_system_category());
 | |
|     asio::detail::throw_error(ec, "kqueue");
 | |
|   }
 | |
|   return fd;
 | |
| }
 | |
| 
 | |
| kqueue_reactor::descriptor_state* kqueue_reactor::allocate_descriptor_state()
 | |
| {
 | |
|   mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
 | |
|   return registered_descriptors_.alloc(ASIO_CONCURRENCY_HINT_IS_LOCKING(
 | |
|         REACTOR_IO, scheduler_.concurrency_hint()));
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::free_descriptor_state(kqueue_reactor::descriptor_state* s)
 | |
| {
 | |
|   mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
 | |
|   registered_descriptors_.free(s);
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::do_add_timer_queue(timer_queue_base& queue)
 | |
| {
 | |
|   mutex::scoped_lock lock(mutex_);
 | |
|   timer_queues_.insert(&queue);
 | |
| }
 | |
| 
 | |
| void kqueue_reactor::do_remove_timer_queue(timer_queue_base& queue)
 | |
| {
 | |
|   mutex::scoped_lock lock(mutex_);
 | |
|   timer_queues_.erase(&queue);
 | |
| }
 | |
| 
 | |
| timespec* kqueue_reactor::get_timeout(long usec, timespec& ts)
 | |
| {
 | |
|   // By default we will wait no longer than 5 minutes. This will ensure that
 | |
|   // any changes to the system clock are detected after no longer than this.
 | |
|   const long max_usec = 5 * 60 * 1000 * 1000;
 | |
|   usec = timer_queues_.wait_duration_usec(
 | |
|       (usec < 0 || max_usec < usec) ? max_usec : usec);
 | |
|   ts.tv_sec = usec / 1000000;
 | |
|   ts.tv_nsec = (usec % 1000000) * 1000;
 | |
|   return &ts;
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| } // namespace asio
 | |
| 
 | |
| #undef ASIO_KQUEUE_EV_SET
 | |
| 
 | |
| #include "asio/detail/pop_options.hpp"
 | |
| 
 | |
| #endif // defined(ASIO_HAS_KQUEUE)
 | |
| 
 | |
| #endif // ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
 |